当前位置: 首页 > news >正文

电商网站开发的流程图人民日报新闻消息

电商网站开发的流程图,人民日报新闻消息,哪个网站做的系统好用,哪个公司做外贸网站好目录 一 分水岭算法 二 利用OpenCV实现分水岭算法的过程 三 实践 一 分水岭算法 基于任何灰度图像都可以视为地形表面,其中高强度表示山峰和山丘,而低强度表示山谷。首先,开始用不同颜色的水(标签)填充每个孤立的山…

目录

一 分水岭算法

二 利用OpenCV实现分水岭算法的过程

三 实践


一 分水岭算法

        基于任何灰度图像都可以视为地形表面,其中高强度表示山峰和山丘,而低强度表示山谷。首先,开始用不同颜色的水(标签)填充每个孤立的山谷(局部最小值)。随着水位的上升,根据附近的山峰(梯度),来自不同山谷的水,显然具有不同的颜色,将开始合并。为了避免这种情况,我们需要在水汇合的位置建造水坝或屏障。如果继续注水和建造屏障的工作,直到所有的山峰都在水下。然后,之前创建的屏障会提供细分的结果。这就是分水岭背后的“哲学”。

        利用OpenCV实现分水岭算法的过程如下:

①首先,找到前景的近似估计值。可以使用 Otsu 的二值化操作实现。

②通过形态学处理对原始的图像img进行降噪操作。

注意:靠近物体中心的区域是前景,而远离物体的区域是背景。不确定的唯一区域是硬币的边界区域

③通过膨胀操作获取“确定的背景区域Background region"。

④利用距离变换函数cv2.distanceTransform()对图像进行处理,并对其结果进行阈值分割,得到”确定前景区域Front reign“。

⑤获取未知的区域UN。UN =img - Background region - Front reign

⑥利用cv.connectedComponents()实现图像的标注工作和对标注结果进行修正。

⑦使用分水岭分割函数cv.watershed()完成对图像的分割。

二 利用OpenCV实现分水岭算法的过程

①Otsu 的二值化操作的结果

img = cv2.imread(img_path)
im = img.copy()
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

②图像降噪操作的结果。

kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)

③确定的背景区域Background region。

sure_bg = cv2.dilate(opening, kernel, iterations=3)

 

④确定的前景区域。

dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure_fg)

 

⑤unknown区域。

unknown = cv2.subtract(sure_bg, sure_fg)

⑥利用cv.connectedComponents()实现图像的标注,并且对标注结果进行修正。

ret, markers = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers + 1
# Now, mark the region of unknown with zero
markers[unknown == 255] = 0

⑦使用分水岭分割函数cv.watershed()完成对目标的分割处理。 

markers = cv2.watershed(im, markers)
# The boundary region will be marked with -1.

三 实践

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):img = cv2.imread(img_path)im = img.copy()gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)# noise removalkernel = np.ones((3, 3), np.uint8)opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)# sure background areasure_bg = cv2.dilate(opening, kernel, iterations=3)# sure foreground areadist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)sure_fg = np.uint8(sure_fg)unknown = cv2.subtract(sure_bg, sure_fg)# Marker labellingret, markers = cv2.connectedComponents(sure_fg)# Add one to all labels so that sure background is not 0, but 1markers = markers + 1# Now, mark the region of unknown with zeromarkers[unknown == 255] = 0markers = cv2.watershed(im, markers)# The boundary region will be marked with -1.im[markers == -1] = [255, 255, 0]fig = plt.figure(figsize=(10, 10))img = dealImg(img)im = dealImg(im)titles = ["im", " OTSU", "open", "sure_bg", "sure_fg", "unknown", "result_im"]images = [img, thresh, opening, sure_bg, sure_fg, unknown, im]for i in range(7):plt.subplot(2, 4, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])#plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("test.jpg")pass
  • 效果图

         从上图中可以看出,对于某些硬币,它们接触的区域可以被正确分割开,而对于某些硬币,则没有分割开。

前文回顾

 入门篇目录

 数字图像处理(入门篇)一 图像的数字化与表示

 数字图像处理(入门篇)二 颜色空间

 数字图像处理(入门篇)三 灰度化

 数字图像处理(入门篇)四 像素关系

 数字图像处理(入门篇)五 图像数据预处理之颜色空间转换

 数字图像处理(入门篇)六 图像数据预处理之坐标变化

 数字图像处理(入门篇)七 图像数据预处理之灰度变化

 数字图像处理(入门篇)八 图像数据预处理之直方图

 数字图像处理(入门篇)九 图像数据预处理之滤波

 数字图像处理(入门篇)十 边缘检测

 数字图像处理(入门篇)十一 形态学处理

 数字图像处理(入门篇)十二 自适应阈值分割

 数字图像处理(入门篇)十三 仿射变换

 数字图像处理(入门篇)十四 透视变换

实践篇目录

数字图像处理(实践篇)一 将图像中的指定目标用bBox框起来吧!

数字图像处理(实践篇)二 画出图像中目标的轮廓

数字图像处理(实践篇)三 将两张图像按照指定比例融合

数字图像处理(实践篇)四 图像拼接-基于SIFT特征点和RANSAC方法

数字图像处理(实践篇)五 使用Grabcut算法进行物体分割

数字图像处理(实践篇)六 利用hough变换进行直线检测

数字图像处理(实践篇)七 利用霍夫变换进行圆环检测

数字图像处理(实践篇)八 Harris角点检测

数字图像处理(实践篇)九 基于边缘的模板匹配

数字图像处理(实践篇)十 图像质量检测

数字图像处理(实践篇)十一 图像中的条形码解析

数字图像处理(实践篇)十二 基于小波变换的图像降噪

数字图像处理(实践篇)十三 数据增强之给图像添加噪声!

数字图像处理(实践篇)十四 图像金字塔

数字图像处理(实践篇)十五 基于傅里叶变换的高通滤波和低通滤波

http://www.rdtb.cn/news/14537.html

相关文章:

  • 怎么查询网站的建站时间石景山区百科seo
  • 做旅游的网站网页怎么做出来的
  • 邢台开发区建设小学官方网站网站制作公司高端
  • 彭阳网站建设多少钱网络推广可做哪些方面
  • 做网站好的网站建设公司哪家好深圳百度推广客服
  • 动易网站建设百度seo公司
  • 织梦网站更换域名seo主要优化
  • 网站开发所遵循怎么打开网站
  • 电子商务网站开发的主要支撑组件安徽网站关键字优化
  • 做网站干嘛网站代理公司
  • 教学成果申报网站 化工专业建设建站快车
  • 赵公口网站建设公司火蝠电商代运营公司
  • 武陟外贸英文网站建设市场调研报告ppt
  • 网页免费版抖音优化公司
  • 网站开发连接数据库合肥seo网站排名
  • 深圳的网站建设公司有哪些适合中层管理的培训
  • 网站建设需要岗位百度站长平台网址
  • 电子商务网站建设公司内蒙古最新消息
  • 做装饰画的行业网站万网注册域名查询
  • 做ppt好的模板下载网站流量神器
  • 做身份证网站seo网站优化软件
  • 知名的政府网站建设企业推广赚钱一个50元
  • 做网站都得会什么技术java培训学费多少钱
  • 网站开发的目的实习报告成都百度搜索排名优化
  • 如何做b2c网站重庆森林讲的什么内容
  • 珠海自适应网站建设无线网络优化
  • 重庆做网站优化信息发布推广平台
  • 政府网站建设现状和存在的问题seo推广软件怎样
  • 快速建站学什么sem竞价是什么
  • 永康医院网站建设国际新闻直播