当前位置: 首页 > news >正文

如何自己做个简单网站互联网去哪里学

如何自己做个简单网站,互联网去哪里学,wordpress tag静态,桂林市临桂区大家好啊,欢迎来到本博客( •̀ ω •́ )✧,我将带领大家详细的了解最大公约数的思想与解法。 一、什么是公约数 公约数,也称为公因数,是指两个或多个整数共有的因数。具体来说,如果一个整数能被两个或多个整数整除&…

  大家好啊,欢迎来到本博客( •̀ ω •́ )✧,我将带领大家详细的了解最大公约数的思想与解法。

这只小猫太可爱了,于是我顺手就偷了过来

一、什么是公约数

公约数,也称为公因数,是指两个或多个整数共有的因数。具体来说,如果一个整数能被两个或多个整数整除,那么这个整数就是这些整数的公约数。

例如,考虑整数12和18:

  • 12的因数有 :1, 2, 3, 4, 6, 12

  • 18的因数有:1, 2, 3, 6, 9, 18

12和18的公约数是它们共有的因数,即:1, 2, 3, 6


二、计算最大公约数的方法:

学习数论的一系列算法时,往往直接看算法,是看不懂的。

这里我们先学习数学解法、在给出算法。

1、辗转相除法:(欧几里得算法)
数学:

假设我们有两个正整数 a 和 b,其中 a>b。根据辗转相除法,最大公约数 gcd(a,b) 可以通过以下步骤求得:

  1. 第一步:计算 a mod b,得到余数 r。

  2. 第二步:将 a 替换为 b,将 b 替换为 r。

  3. 第三步:重复上述步骤,直到 b=0 时,此时 a 即为最大公约数。

下方用(18、12)举例。

如图:

代码:
简约背诵版:
#include "iostream"
using namespace std;
// 求公约数
int gcd(int a, int b){while(a%b!=0){int c = a%b;a=b;b=c;}return b;
}int main(){int a,b;a = 18;b = 12;cout<<func(a,b)<<endl;return 0;
}
解释版:
// 包含输入输出流头文件,用于使用 cin 和 cout 进行输入输出操作
#include <iostream>// 使用标准命名空间,这样就可以直接使用标准库中的类和函数,而无需加 std:: 前缀
using namespace std;/*** 函数功能:计算两个整数的最大公约数(Greatest Common Divisor, GCD)* 参数:*      a: 第一个整数*      b: 第二个整数* 返回值:*      a 和 b 的最大公约数* 算法:使用欧几里得算法(辗转相除法)来计算最大公约数* 原理:两个整数 a 和 b(a > b)的最大公约数等于 b 和 a % b 的最大公约数*/
int gcd(int a, int b) {// 当 a 除以 b 的余数不为 0 时,继续循环while (a % b != 0) {// 计算 a 除以 b 的余数,并将其存储在变量 c 中int c = a % b;// 将 b 的值赋给 aa = b;// 将余数 c 的值赋给 bb = c;}// 当循环结束时,b 即为 a 和 b 的最大公约数,将其返回return b;
}int main() {// 定义两个整型变量 a 和 b,用于存储要计算最大公约数的两个数int a, b;// 给变量 a 赋值为 18a = 18;// 给变量 b 赋值为 12b = 12;// 调用 gcd 函数计算 a 和 b 的最大公约数,并将结果输出到控制台cout << gcd(a, b) << endl;// 程序正常结束,返回 0 表示成功return 0;
}
2、更相减损版(辗转相减法)
数学:

更相减损法是一种古老的算法,用于求两个正整数的最大公约数(GCD)。它最早出现在中国古代数学著作《九章算术》中。以下是更相减损法的数学用法和原理

更相减损法的基本原理是:对于任意两个正整数 a 和 b(假设 a≥b),如果 a 和 b 都是偶数,则可以用 2 约简;如果 a 和 b 不都是偶数,则用较大的数减去较小的数,然后继续对所得的差和较小的数进行同样的操作,直到两个数相等为止。这个相等的数就是它们的最大公约数。

如图:

代码:
简约背诵版: 
#include "iostream"
using namespace std;int func(int a, int b){while(a-b!=0){int c = a - b;a = b;b = c;}return a;
}int main(){int a,b;a = 18;b = 12;cout<<func(a,b)<<endl;return 0;
}
解释版:
// 引入标准输入输出流头文件,该头文件提供了像 cin 和 cout 这样的输入输出功能
// 注意:这里使用双引号包含头文件通常用于自定义头文件,标准库头文件一般用尖括号,应改为 #include <iostream>
#include "iostream"// 使用标准命名空间 std,这样在后续代码里就可以直接使用标准库中的类和函数,无需添加 std:: 前缀
using namespace std;/*** 函数名: func* 功能: 计算两个整数的最大公约数(Greatest Common Divisor, GCD)* 参数:*      a: 第一个整数*      b: 第二个整数* 返回值:*      a 和 b 的最大公约数* 算法: 采用更相减损术来计算最大公约数* 原理: 两个正整数 a 和 b(a > b)的最大公约数等于 b 和 a - b 的最大公约数*/
int func(int a, int b) {// 只要 a 与 b 的差值不为 0,就持续循环while (a - b != 0) {// 计算 a 减去 b 的差值,并将结果存储在临时变量 c 中int c = a - b;// 把 b 的值赋给 aa = b;// 把差值 c 的值赋给 bb = c;}// 当 a 与 b 的差值为 0 时,说明此时 a 和 b 相等,这个相等的值就是 a 和 b 的最大公约数,将其返回return a;
}/*** 函数名: main* 功能: 程序的入口函数,程序从这里开始执行* 参数: 无* 返回值:*      整数 0,表示程序正常结束*/
int main() {// 声明两个整型变量 a 和 b,用于存储要计算最大公约数的两个数int a, b;// 给变量 a 赋值为 18a = 18;// 给变量 b 赋值为 12b = 12;// 调用 func 函数计算 a 和 b 的最大公约数,并将结果输出到标准输出流(通常是控制台)// 输出完成后换行cout << func(a, b) << endl;// 返回 0 表示程序正常结束return 0;
}
3、其他方法:

其他方法不像(辗转相除法与更相减损法)那么简便。

所以我在这里,只简单的介绍一下:

1、分解质因数

#include<stdio.h>
void fun(int * arr,int n)
{int i = 2, j = 0;while (n > 1){if (n % i == 0){arr[j++] = i;n /= i;}else {i++;}}
}
int gcd(int a,int b) 
{//因为要进行找这个数的共有的因数,所以这里用数组来接收int arr_a[100] = {0};//放a的所有因数int arr_b[100] = {0};//放b的所有因数//进行放因数fun(arr_a,a);fun(arr_b,b);//找出公共的因数,然后相乘int i = 0, j = 0, ret = 1;while (arr_a[i] != 0 && arr_b[j] != 0) {if (arr_a[i] == arr_b[j]) {ret *= arr_a[i];i++;j++;}else if (arr_a[i] > arr_b[j]){j++;}else{i++;}}return ret;
}
int main() 
{int a = 0;int b = 0;scanf("%d %d",&a,&b);int ret = gcd(a,b);//最大公因数printf("%d和%d的最大公因数是:%d",a,b,ret);return 0;
}
2、穷举法

法如其名,一个一个的输入测试,最后取出来。

//穷举法
#include<stdio.h>
int main() 
{int a = 0;int b = 0;scanf("%d %d",&a,&b);int t = a;while (t--){if (a % t == 0 && b % t == 0)break;}printf("%d",t);return 0;
}
 3、递归法

简单来说,递归法其实就是模拟了辗转相除法。

#include "iostream"
using namespace std;int gcd(int a, int b){if(a%b==0){ // 得到余数return b;}else{ // 余数为0进入递归return gcd(b,a%b); // b放到a的位置,a/b的余数放到b的位置 }
}
int main(){int a,b;a = 18;b = 12;cout<<gcd(a,b)<<endl;return 0;
}

三、练习:

等差数列

题目描述

数学老师给小明出了一道等差数列求和的题目。但是粗心的小明忘记了一 部分的数列,只记得其中 NN 个整数。

现在给出这 NN 个整数,小明想知道包含这 NN 个整数的最短的等差数列有几项?

输入描述

输入的第一行包含一个整数 NN。

第二行包含 NN 个整数 A1,A2,⋅⋅⋅,ANA1​,A2​,⋅⋅⋅,AN​。(注意 A1A1​ ∼ ANAN​ 并不一定是按等差数列中的顺序给出)

其中,2≤N≤105,0≤Ai≤1092≤N≤105,0≤Ai​≤109。

输出描述

输出一个整数表示答案。

输入输出样例

示例

输入

5
2 6 4 10 20

输出

10

样例说明: 包含 2、6、4、10、20 的最短的等差数列是 2、4、6、8、10、12、14、16、 18、20

 这道题目说难不难,说简单不简单

1、很多人不会想到用gcd解题,甚至是直接暴力解题,欸!我一会也试试:(vec[n-1]-vec[0])/n,看来是不行的(n不是所有个数)。但是也能用最小差值作为间隔呀,如:d = min(d,gcd(dif[i],dif[i+1])); 这样好像也行,一会试试

2、当然就是这个啦d = min(d,vec[i+1]-vec[i]); 好多人没考虑min,细节容易出错。

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;// 通过递归
int gcd(int a, int b){if(a%b==0){return b;}else{return gcd(b,a%b);}
}int main()
{int n;cin>>n;vector<int> vec(n);for(int i=0; i<n; ++i){cin>>vec[i];}if(vec.size()==2){ // 特殊情况,只有两个数cout<<2<<endl;return 0;}sort(vec.begin(), vec.end());vector<int> dif(n-1); // 差集数列for(int i=0; i<vec.size()-1; ++i){dif[i] = vec[i+1]-vec[i];}int d = dif[0];if(d==0){  // 有没有一种可能,差值为0。cout<<n<<endl;return 0;}for(int i=0; i<dif.size()-1; ++i){ // 所有差集的最大公约数d = min(d,gcd(dif[i],dif[i+1])); // 为防止结果处,出现更大的差值。}int num = (vec[vec.size()-1]-vec[0])/d; // d 为0的情况,已经被排除if(d==num){cout<<vec.size()<<endl;}else{cout<<num+1<<endl;}return 0;
}

笔者感悟

学习数论的一系列算法时,往往直接看算法,是看不懂的。

需要先摸清数学思想,胸有成竹之时,写对应算法就更轻松、也记得更牢固。

别人算法理解不透的时候,往往是基础扎的不够牢固。


借鉴博客/视频

1、求最大公约数的几种常见的方法 【详解】


http://www.rdtb.cn/news/14445.html

相关文章:

  • 苹果手机怎么做ppt下载网站网站服务器查询工具
  • 做网站与全网营销搜索推广排名优化seo网络推广招聘
  • 品牌网站建设策北京谷歌seo
  • 做微商货源网站赚钱吗百度人工客服24小时电话
  • 企业网站开发哪家专业百度seo排名帝搜软件
  • 本地wordpress怎么上传seo高效优化
  • 小程序制作怎么导入题库深圳谷歌seo公司
  • 网页制作工具大全网站优化的方法与技巧
  • 企业网站的建设意义是什么站内seo和站外seo区别
  • 培训网站建设情况商丘seo优化
  • 网站建设合同印花税税目微信客户管理
  • 穿着高跟鞋做的网站网络推广有哪些
  • 河南免费网站建设重庆网络seo公司
  • 桂林北站官网在线友情链接
  • dz网站收款即时到账怎么做的免费建站有哪些
  • 直播的网站开发温州seo
  • 建网站的目的夸克搜索网页版
  • 免费创建论坛北京seo推广外包
  • wordpress 收费阅读seo百度关键词优化软件
  • xx市院门户网站建设方案查询网站注册信息
  • 网站建设资讯什么是seo技术
  • 套做网站产品推广怎么做
  • h5自适应网站建设是什么意思谷歌广告代理
  • 网络公司 给 客户网站备案做百度seo
  • 长春网站设计策划网络优化师是什么工作
  • 手机网站免费建设平台长春百度推广排名优化
  • 兰州专业做网站业务推广平台
  • 做图网站有哪些人民日报最新消息
  • 同一虚拟空间做两个网站网销平台排名
  • 在线单页网站制作网络推广具体内容