当前位置: 首页 > news >正文

app开发与网站开发营销技巧在线完整免费观看

app开发与网站开发,营销技巧在线完整免费观看,java做博客网站,做微博分析的网站在阅读本文前,建议先食用以下几篇文章以能更好地理解狄利克雷分布: 二项分布 Beta分布 多项分布 共轭分布 狄利克雷分布 狄利克雷分布(Dirichlet distribution)是Beta分布的扩展,把Beta分布从二元扩展到多元形式就是狄利克雷分布&#…

在阅读本文前,建议先食用以下几篇文章以能更好地理解狄利克雷分布:

二项分布

Beta分布

多项分布

共轭分布

狄利克雷分布

狄利克雷分布(Dirichlet distribution)是Beta分布的扩展,把Beta分布从二元扩展到多元形式就是狄利克雷分布,Beta分布是狄利克雷分布的二元特例。

在共轭方面,可以类比Beta分布与二项分布的关系,狄利克雷分布是多项分布的共轭分布,因此狄利克雷分布常作为多项分布的先验分布使用,它是多项分布似然的共轭先验。

狄利克雷分布本质上是多元连续型随机变量的概率密度分布,假设多元随机变量 θ = ( θ 1 , θ 2 , . . . , θ k ) θ=(θ_1,θ_2,...,θ_k) θ=(θ1,θ2,...,θk) 服从参数 α = ( α 1 , α 2 , . . . , α k ) \alpha=(\alpha _1,\alpha _2,...,\alpha _k) α=(α1,α2,...,αk) 的狄利克雷分布,记作 θ ∽ D i r ( α ) θ \backsim Dir(\alpha) θDir(α) ,则概率密度函数可表示为:

p ( θ ∣ α ) = Γ ( ∑ i = 1 k α i ) ∏ i = 1 k Γ ( α i ) ∏ i = 1 k θ i α i − 1 = 1 B ( α ) ∏ i = 1 k θ i α i − 1 ( 1 ) p(θ|\alpha)={\Gamma(\sum_{i=1}^k{\alpha _i})\over{\prod_{i_=1}^k\Gamma(\alpha _i)}}\prod_{i=1}^k θ_i^{\alpha_{i-1}}={1\over{B(\alpha)}}\prod_{i=1}^k θ_i^{\alpha_{i-1}} \ \ \ \ \ (1) p(θα)=i=1kΓ(αi)Γ(i=1kαi)i=1kθiαi1=B(α)1i=1kθiαi1     (1)

其中, ∑ i = 1 k θ i = 1 \sum_{i=1}^kθ_i=1 i=1kθi=1 θ i ≥ 0 θ_i \geq 0 θi0 α i > 0 \alpha_i > 0 αi>0

初识者对式 ( 1 ) (1) (1) 可能不明就里,我们来对它做个通俗的解释。

在二项分布和Beta分布中我们曾以抛硬币举例,因为他们只涉及到二元变量,硬币的正反面就可以表示。

在多项分布里面用的是骰子举例,狄利克雷分布也同样可以效仿之。

假设有个生产骰子的工厂,这个工厂技术精湛且先进,不仅能造出一般的质地均匀的六面骰子,甚至可以造出任意质地任意多个面的骰子,这里质地均匀指的是骰子掷出每个面的概率相同,任意质地指掷出每个面的概率不同(但和为1)。在此背景下,狄利克雷分布中的 k k k 元随机变量 θ = ( θ 1 , θ 2 , . . . , θ k ) θ=(θ_1,θ_2,...,θ_k) θ=(θ1,θ2,...,θk) 可以看作掷一枚这个工厂生产的具有 k k k 个面的骰子时, 每个面出现的概率;参数 α = ( α 1 , α 2 , . . . , α k ) \alpha=(\alpha _1,\alpha _2,...,\alpha _k) α=(α1,α2,...,αk) 可以看作掷 n n n 次骰子中, k k k 个面中每个面出现的次数,并且满足 ∑ i = 1 k θ i = 1 \sum_{i=1}^kθ_i=1 i=1kθi=1 ∑ i = 1 k α i = n \sum_{i=1}^k\alpha_i=n i=1kαi=n

因为 θ θ θ 满足 ∑ i = 1 k θ i = 1 \sum_{i=1}^kθ_i=1 i=1kθi=1 θ i ≥ 0 θ_i \geq 0 θi0 ,可以说狄利克雷分布的 k k k 元随机变量 θ = ( θ 1 , θ 2 , . . . , θ k ) θ=(θ_1,θ_2,...,θ_k) θ=(θ1,θ2,...,θk) 是定义在 k − 1 k-1 k1 维概率单纯形(K-dimentional probability simplex)上的 。 k k k 维单纯形就是具有 k + 1 k+1 k+1 个顶点的凸多面体,比如二维单纯形是个三角形、有三个顶点;三维单纯形是四面体、有四个顶点。 k k k 表示类别的数量,概率单纯形上的一个点可以用 k k k 个和为1的非负数表示。比如当 k = 3 k=3 k=3 时, θ 1 、 θ 2 、 θ 3 θ_1、θ_2、θ_3 θ1θ2θ3 分布在三维空间 z = 1 − x − y z=1-x-y z=1xy 的平面三角形上,是个二维单纯形。


在这里插入图片描述


http://www.rdtb.cn/news/814.html

相关文章:

  • 个人网站域名后缀刷粉网站推广便宜
  • 网站是先解析后备案爱站网权重查询
  • 个人网站建站目的百度热线客服24小时
  • 一个网站的年维护费快速seo软件
  • 自己做公司网站成本营销策划案的模板
  • 关于做情侣的网站的图片素材微信seo什么意思
  • wordpress 主题 域名seo提高网站排名
  • 网站开发教案宁波seo外包费用
  • 免费vip电影网站怎么做免费网站外链推广
  • 怎么做国外的网站推广正规推广平台有哪些
  • 教人怎么做网页的网站/长沙谷歌seo
  • 网站建设求职简历模板/朋友圈广告推广代理
  • 谁教我做啊谁会做网站啊/seo教程自学
  • 网站制作公司多少钱一年/东莞网站设计公司
  • 陕西专业网站建设哪家好/潍坊网站建设
  • 自己的服务器 做网站/百度竞价冷门产品
  • ui网站界面设计/seo优化的主要任务
  • 做网站用母版页不好么/编程培训班学费一般多少钱
  • 南京网站费用网站建设/百度公司招聘官网最新招聘
  • 网站添加二级域名/网络营销的几种模式
  • 山东省建设执业师之家官方网站/小广告网站
  • 站长工具怎么关掉/推广员是干什么的
  • 在深圳做网站平台需要什么备案/杭州优化建筑设计
  • 陕西省经营性网站备案/外链工具xg下载
  • 网站源码建站教程/58网络推广
  • 珠海市城乡规划建设局网站/新闻稿
  • wordpress文章爬取/合肥网站关键词优化公司
  • 网站建设公司中心/win7最好的优化软件
  • wordpress 免费博客/seo优化费用
  • 平台建站/抖音seo优化系统招商