当前位置: 首页 > news >正文

怎么做这个购物网站/百度博客收录提交入口

怎么做这个购物网站,百度博客收录提交入口,活动策划怎么写,深圳制作网站公司哪里好文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题:有序数组中的单一元素 出处:540. 有序数组中的单一元素 难度 4 级 题目描述 要求 给定一个仅由整数…

文章目录

  • 题目
    • 标题和出处
    • 难度
    • 题目描述
      • 要求
      • 示例
      • 数据范围
  • 解法一
    • 思路和算法
    • 代码
    • 复杂度分析
  • 解法二
    • 思路和算法
    • 代码
    • 复杂度分析

题目

标题和出处

标题:有序数组中的单一元素

出处:540. 有序数组中的单一元素

难度

4 级

题目描述

要求

给定一个仅由整数组成的升序数组,其中每个元素都出现两次,除了一个元素只出现一次。

返回只出现一次的元素。

要求时间复杂度是 O(log n) \texttt{O(log n)} O(log n),空间复杂度是 O(1) \texttt{O(1)} O(1)

示例

示例 1:

输入: nums = [1,1,2,3,3,4,4,8,8] \texttt{nums = [1,1,2,3,3,4,4,8,8]} nums = [1,1,2,3,3,4,4,8,8]
输出: 2 \texttt{2} 2

示例 2:

输入: nums = [3,3,7,7,10,11,11] \texttt{nums = [3,3,7,7,10,11,11]} nums = [3,3,7,7,10,11,11]
输出: 10 \texttt{10} 10

数据范围

  • 1 ≤ nums.length ≤ 10 5 \texttt{1} \le \texttt{nums.length} \le \texttt{10}^\texttt{5} 1nums.length105
  • 0 ≤ nums[i] ≤ 10 5 \texttt{0} \le \texttt{nums[i]} \le \texttt{10}^\texttt{5} 0nums[i]105

解法一

思路和算法

由于给定的数组已经排序,因此相同元素在数组中一定位于相邻的位置。对于只出现一次的元素,该元素的左边和右边各有偶数个元素。假设只出现一次的元素位于下标 index \textit{index} index,考虑下标 x x x 处的元素, x ≠ index x \ne \textit{index} x=index

  • x < index x < \textit{index} x<index 时,只出现一次的元素在下标 x x x 的右边。如果 x x x 是偶数,则 nums [ x ] = nums [ x + 1 ] \textit{nums}[x] = \textit{nums}[x + 1] nums[x]=nums[x+1];如果 x x x 是奇数,则 nums [ x ] = nums [ x − 1 ] \textit{nums}[x] = \textit{nums}[x - 1] nums[x]=nums[x1]

  • x > index x > \textit{index} x>index 时,只出现一次的元素在下标 x x x 的左边。如果 x x x 是偶数,则 nums [ x ] = nums [ x − 1 ] \textit{nums}[x] = \textit{nums}[x - 1] nums[x]=nums[x1];如果 x x x 是奇数,则 nums [ x ] = nums [ x + 1 ] \textit{nums}[x] = \textit{nums}[x + 1] nums[x]=nums[x+1]

对于下标 x x x,可以根据 x x x 的奇偶性以及与 nums [ x ] \textit{nums}[x] nums[x] 相同的元素下标判断只出现一次的元素位于下标 x x x 处、下标 x x x 的左边或下标 x x x 的右边。因此可以使用二分查找得到只出现一次的元素的下标。

low \textit{low} low high \textit{high} high 分别表示二分查找的下标范围的下界和上界,初始时 low \textit{low} low high \textit{high} high 分别为数组的最小下标和最大下标。每次查找时,取 mid \textit{mid} mid low \textit{low} low high \textit{high} high 的平均数向下取整,执行如下操作。

  • 如果 mid \textit{mid} mid 是偶数且 nums [ mid ] = nums [ mid + 1 ] \textit{nums}[\textit{mid}] = \textit{nums}[\textit{mid} + 1] nums[mid]=nums[mid+1],或 mid \textit{mid} mid 是奇数且 nums [ mid ] = nums [ mid − 1 ] \textit{nums}[\textit{mid}] = \textit{nums}[\textit{mid} - 1] nums[mid]=nums[mid1],则只出现一次的元素位于下标 mid \textit{mid} mid 的右边,因此在下标范围 [ mid + 1 , high ] [\textit{mid} + 1, \textit{high}] [mid+1,high] 中继续查找。

  • 否则,只出现一次的元素位于下标 mid \textit{mid} mid 或其左边,因此在下标范围 [ low , mid ] [\textit{low}, \textit{mid}] [low,mid] 中继续查找。

low = high \textit{low} = \textit{high} low=high 时,查找结束,此时 low \textit{low} low 即为只出现一次的元素的下标, nums [ low ] \textit{nums}[\textit{low}] nums[low] 即为只出现一次的元素。

代码

class Solution {public int singleNonDuplicate(int[] nums) {int low = 0, high = nums.length - 1;while (low < high) {int mid = low + (high - low) / 2;if (mid % 2 == 0 && nums[mid] == nums[mid + 1] || mid % 2 == 1 && nums[mid] == nums[mid - 1]) {low = mid + 1;} else {high = mid;}}return nums[low];}
}

复杂度分析

  • 时间复杂度: O ( log ⁡ n ) O(\log n) O(logn),其中 n n n 是数组 nums \textit{nums} nums 的长度。二分查找的范围是数组的全部 n n n 个下标,二分查找的时间复杂度是 O ( log ⁡ n ) O(\log n) O(logn)

  • 空间复杂度: O ( 1 ) O(1) O(1)

解法二

思路和算法

由于只出现一次的元素的左边有偶数个元素,因此只出现一次的元素一定位于偶数下标,可以只在偶数下标中二分查找。

由于给定的数组长度是奇数,因此数组的最小下标和最大下标都是偶数,二分查找的下标范围的下界和上界的初始值分别为数组的最小下标和最大下标。每次查找时,取 mid \textit{mid} mid low \textit{low} low high \textit{high} high 的平均数向下取整,如果得到的 mid \textit{mid} mid 是奇数则将 mid \textit{mid} mid 1 1 1,确保 mid \textit{mid} mid 是偶数,执行如下操作。

  • 如果 nums [ mid ] = nums [ mid + 1 ] \textit{nums}[\textit{mid}] = \textit{nums}[\textit{mid} + 1] nums[mid]=nums[mid+1],则只出现一次的元素位于下标 mid \textit{mid} mid 的右边,因此在下标范围 [ mid + 2 , high ] [\textit{mid} + 2, \textit{high}] [mid+2,high] 中继续查找。

  • 否则,只出现一次的元素位于下标 mid \textit{mid} mid 或其左边,因此在下标范围 [ low , mid ] [\textit{low}, \textit{mid}] [low,mid] 中继续查找。

二分查找过程中,每次更新后的下标范围的下界和上界都是偶数,确保只在偶数下标中二分查找。

low = high \textit{low} = \textit{high} low=high 时,查找结束,此时 low \textit{low} low 即为只出现一次的元素的下标, nums [ low ] \textit{nums}[\textit{low}] nums[low] 即为只出现一次的元素。

代码

class Solution {public int singleNonDuplicate(int[] nums) {int low = 0, high = nums.length - 1;while (low < high) {int mid = low + (high - low) / 2;if (mid % 2 != 0) {mid--;}if (nums[mid] == nums[mid + 1]) {low = mid + 2;} else {high = mid;}}return nums[low];}
}

复杂度分析

  • 时间复杂度: O ( log ⁡ n ) O(\log n) O(logn),其中 n n n 是数组 nums \textit{nums} nums 的长度。二分查找的范围是数组的 n + 1 2 \dfrac{n + 1}{2} 2n+1 个偶数下标,二分查找的时间复杂度是 O ( log ⁡ n ) O(\log n) O(logn)

  • 空间复杂度: O ( 1 ) O(1) O(1)

http://www.rdtb.cn/news/418.html

相关文章:

  • 网线制作顺序/天津seo诊断技术
  • 门户网站开发介绍/北京网站优化体验
  • 武汉地铁计划建设在哪个网站查/sem 优化价格
  • 网站开发需要多长时间/aso优化费用
  • 网站开发保密合同/专业seo优化公司
  • 建立网站/湖南网站制作公司
  • 网站手机优化显示/营销推广的平台
  • 网站建设模版/制作网站要找什么公司
  • 汕头网站制作公司/b2b自动发布信息软件
  • wordpress分类目录混乱/广西网站seo
  • 南京工程建设招聘信息网站/百度搜索排行榜
  • 做门名片设计网站/google play商店
  • wordpress视频付费/镇江网站seo
  • 武汉站到阳逻定制公交/网站优化哪个公司好
  • 做网站 图文教程/秦皇岛seo排名
  • 做外贸怎样利用免费b2b网站/怎样申请自己的电商平台
  • 怎么看一个网站是由哪个网络公司做的/站长工具端口检测
  • 软件开发培训出来好找工作吗/重庆seo网络优化师
  • 广州网站建设广州网络推广公司好/杭州上城区抖音seo有多好
  • 建网站的域名/无锡百度快速优化排名
  • 易思espcms企业网站管理系统/怎么做手工
  • 旅游公司网站开发与实现/网站推广方案策划书2000
  • 全国人大网站建设/百度关键词seo优化
  • 网站建设企业资质/chrome浏览器
  • 淘宝客网站推广工具/b2b电子商务平台网站
  • 做三级锅炉证模拟考试的网站/优化大师客服
  • asp.net网站开发文档/seo站内优化技巧
  • wordpress文章显示404/站长工具seo综合查询关键词
  • 毕业设计做b2c网站的意义/整合营销传播案例分析
  • 网站后台排版布局/中国公关公司前十名