当前位置: 首页 > news >正文

做网站哪种域名好记学前端去哪个培训机构

做网站哪种域名好记,学前端去哪个培训机构,网站建设的公司如何选,住房和城乡建设部网站加装电梯矩阵的奇异值(Singular Values)是奇异值分解(SVD)过程中得到的一组重要特征值。它们在许多应用中非常重要,如信号处理、数据压缩和统计学等。以下是对奇异值及其计算和性质的详细解释: 奇异值分解&#xf…

矩阵的奇异值(Singular Values)是奇异值分解(SVD)过程中得到的一组重要特征值。它们在许多应用中非常重要,如信号处理、数据压缩和统计学等。以下是对奇异值及其计算和性质的详细解释:

奇异值分解(SVD)

奇异值分解是矩阵分解的一种方法,它将任意一个实数或复数矩阵分解为三个特定矩阵的乘积。具体来说,对于一个 m × n m \times n m×n的矩阵 M \mathbf{M} M,其奇异值分解表示为:

M = U Σ V ⊤ \mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top M=V

其中:

  • U \mathbf{U} U是一个 m × m m \times m m×m的正交矩阵,包含了矩阵 M \mathbf{M} M的左奇异向量。
  • Σ \mathbf{\Sigma} Σ是一个 m × n m \times n m×n的对角矩阵,对角线上是矩阵 M \mathbf{M} M的奇异值,其余元素为零。
  • V ⊤ \mathbf{V}^\top V是一个 n × n n \times n n×n的正交矩阵,包含了矩阵 M \mathbf{M} M的右奇异向量。

奇异值的计算

奇异值 σ i \sigma_i σi是矩阵 M \mathbf{M} M的奇异值分解中对角矩阵 Σ \mathbf{\Sigma} Σ的非负对角元素。它们是 M M ⊤ \mathbf{M} \mathbf{M}^\top MM M ⊤ M \mathbf{M}^\top \mathbf{M} MM的非负特征值的平方根。具体来说,如果 M \mathbf{M} M的奇异值为 σ i \sigma_i σi,那么 σ i \sigma_i σi满足以下条件:

M M ⊤ u i = σ i 2 u i \mathbf{M} \mathbf{M}^\top \mathbf{u}_i = \sigma_i^2 \mathbf{u}_i MMui=σi2ui
M ⊤ M v i = σ i 2 v i \mathbf{M}^\top \mathbf{M} \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i MMvi=σi2vi

其中, u i \mathbf{u}_i ui v i \mathbf{v}_i vi分别是 M M ⊤ \mathbf{M} \mathbf{M}^\top MM M ⊤ M \mathbf{M}^\top \mathbf{M} MM的特征向量。

奇异值的性质

  1. 非负性:奇异值总是非负的,即 σ i ≥ 0 \sigma_i \geq 0 σi0
  2. 排列顺序:奇异值通常按降序排列,即 σ 1 ≥ σ 2 ≥ ⋯ ≥ σ min ⁡ ( m , n ) \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)} σ1σ2σmin(m,n)
  3. 数量:一个 m × n m \times n m×n矩阵最多有 min ⁡ ( m , n ) \min(m, n) min(m,n)个奇异值。
  4. 对称性:奇异值是对称矩阵的特征值的绝对值。

奇异值的应用

奇异值在许多领域都有广泛应用,包括但不限于:

  • 矩阵近似:通过截断较小的奇异值,可以得到矩阵的低秩近似,用于数据压缩和降维。
  • 数据压缩:在图像处理和压缩中,保留较大的奇异值可以有效减少数据存储量,同时保持较高的数据质量。
  • 信号处理:奇异值分解用于去噪和信号恢复。
  • 统计学:在主成分分析(PCA)中,奇异值用于确定数据的主成分方向和方差。

通过以上解释,希望能帮助你更好地理解奇异值及其在矩阵分析中的重要性。

好的,让我们通过一个具体的例子来说明奇异值的计算过程。

示例矩阵

考虑一个 2 × 2 2 \times 2 2×2的矩阵 A \mathbf{A} A

A = ( 3 1 1 3 ) \mathbf{A} = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} A=(3113)

计算奇异值

  1. 计算 A ⊤ A \mathbf{A}^\top \mathbf{A} AA A A ⊤ \mathbf{A} \mathbf{A}^\top AA

首先,计算 A ⊤ A \mathbf{A}^\top \mathbf{A} AA A A ⊤ \mathbf{A} \mathbf{A}^\top AA

A ⊤ A = ( 3 1 1 3 ) ⊤ ( 3 1 1 3 ) = ( 10 6 6 10 ) \mathbf{A}^\top \mathbf{A} = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}^\top \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} AA=(3113)(3113)=(106610)

A A ⊤ = ( 3 1 1 3 ) ( 3 1 1 3 ) ⊤ = ( 10 6 6 10 ) \mathbf{A} \mathbf{A}^\top = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}^\top = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} AA=(3113)(3113)=(106610)

注意到这两个矩阵是相同的。

  1. 求解 A ⊤ A \mathbf{A}^\top \mathbf{A} AA的特征值

接下来,求解 A ⊤ A \mathbf{A}^\top \mathbf{A} AA的特征值。设 A ⊤ A \mathbf{A}^\top \mathbf{A} AA的特征值为 λ \lambda λ,我们需要解特征方程:

det ⁡ ( A ⊤ A − λ I ) = 0 \det(\mathbf{A}^\top \mathbf{A} - \lambda \mathbf{I}) = 0 det(AAλI)=0

即:

det ⁡ ( 10 − λ 6 6 10 − λ ) = 0 \det\begin{pmatrix} 10 - \lambda & 6 \\ 6 & 10 - \lambda \end{pmatrix} = 0 det(10λ6610λ)=0

计算行列式:

( 10 − λ ) 2 − 36 = 0 (10 - \lambda)^2 - 36 = 0 (10λ)236=0

解这个二次方程:

λ 2 − 20 λ + 64 = 0 \lambda^2 - 20\lambda + 64 = 0 λ220λ+64=0

求解得到特征值:

λ = 16 和 λ = 4 \lambda = 16 \quad \text{和} \quad \lambda = 4 λ=16λ=4

  1. 计算奇异值

奇异值是 A \mathbf{A} A的特征值的平方根。因此:

σ 1 = 16 = 4 \sigma_1 = \sqrt{16} = 4 σ1=16 =4

σ 2 = 4 = 2 \sigma_2 = \sqrt{4} = 2 σ2=4 =2

因此,矩阵 A \mathbf{A} A的奇异值为 σ 1 = 4 \sigma_1 = 4 σ1=4 σ 2 = 2 \sigma_2 = 2 σ2=2

奇异值分解

我们可以进一步进行奇异值分解(SVD),将矩阵 A \mathbf{A} A分解为:

A = U Σ V ⊤ \mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top A=V

其中:

  • U \mathbf{U} U V \mathbf{V} V是正交矩阵(包含左奇异向量和右奇异向量)。
  • Σ \mathbf{\Sigma} Σ是对角矩阵,包含奇异值。

对于本例中的矩阵 A \mathbf{A} A

Σ = ( 4 0 0 2 ) \mathbf{\Sigma} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} Σ=(4002)

计算 U \mathbf{U} U V \mathbf{V} V

左奇异向量 U \mathbf{U} U和右奇异向量 V \mathbf{V} V是通过求解以下方程得到的:

A A ⊤ u i = σ i 2 u i \mathbf{A} \mathbf{A}^\top \mathbf{u}_i = \sigma_i^2 \mathbf{u}_i AAui=σi2ui

A ⊤ A v i = σ i 2 v i \mathbf{A}^\top \mathbf{A} \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i AAvi=σi2vi

我们已知:

A A ⊤ = A ⊤ A = ( 10 6 6 10 ) \mathbf{A} \mathbf{A}^\top = \mathbf{A}^\top \mathbf{A} = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} AA=AA=(106610)

求解这两个矩阵的特征向量即可得到 U \mathbf{U} U V \mathbf{V} V

通过计算,得到:

u 1 = v 1 = ( 1 2 1 2 ) , u 2 = v 2 = ( − 1 2 1 2 ) \mathbf{u}_1 = \mathbf{v}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \mathbf{u}_2 = \mathbf{v}_2 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} u1=v1=(2 12 1),u2=v2=(2 12 1)

因此:

U = V = ( 1 2 − 1 2 1 2 1 2 ) \mathbf{U} = \mathbf{V} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} U=V=(2 12 12 12 1)

综上,矩阵 A \mathbf{A} A的奇异值分解为:

A = U Σ V ⊤ = ( 1 2 − 1 2 1 2 1 2 ) ( 4 0 0 2 ) ( 1 2 1 2 − 1 2 1 2 ) \mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} A=V=(2 12 12 12 1)(4002)(2 12 12 12 1)

这就是矩阵 A \mathbf{A} A的奇异值计算和奇异值分解的完整过程。

http://www.rdtb.cn/news/21317.html

相关文章:

  • 香港代理服务器ip免费网络公司优化关键词
  • 大连做网站qq群宁德市蕉城区
  • 二手车 网站程序网站模板商城
  • 建设购物网站的目的抖音seo怎么做的
  • 网站如何重新备案外链吧
  • 兰州做it网站运营的怎么样百度高级搜索页面
  • vs2010做网站时间控件友情链接检查工具
  • wordpress上传本地主题seo优化推广专员招聘
  • 做各国民宿租赁的网站seo优化的方法有哪些
  • 做彩票网站犯法如何制作链接推广
  • 如何做外贸网站外贸网站制作公司
  • 怎么选择网站模板qq推广链接生成
  • 制作u盘启动盘seo网络优化专员
  • 望京 网站建设怎么做业务推广技巧
  • ps做素材下载网站专门发广告的app
  • 网站域名申请费用注册安全工程师
  • 柳州市建委网站国内最新的新闻
  • 沈阳网站建设的价格百度发布平台官网
  • 大兴做网站建设制作网站建设公司
  • 镇江网站制作sem优化是什么
  • 专业外贸网站建设百度站长工具平台登录
  • 怎么用宝塔做网站免费html网站制作成品
  • 网站开发图片素材wordpress建站
  • 怎么查询公司的注册信息seo网络营销的技术
  • 做标书有哪些网站能接到好口碑关键词优化
  • 十大景观设计公司排名seo这个职位是干什么的
  • 深圳网站制作的公司制作自己的网页
  • 楚雄市住房和城乡建设局网站互联网营销的方式有哪些
  • 阿里巴巴上怎样做自己的网站怎样创建自己的网站
  • 做网站海报央视新闻今天的内容