当前位置: 首页 > news >正文

武汉做网站公司方讯网站seo关键词优化技巧

武汉做网站公司方讯,网站seo关键词优化技巧,做网站全自动cpa引流,网站模板怎么套用概述 目的:让机器学习效果更好,单个不行,集成多个 集成算法 Bagging:训练多个分类器取平均 f ( x ) 1 / M ∑ m 1 M f m ( x ) f(x)1/M\sum^M_{m1}{f_m(x)} f(x)1/M∑m1M​fm​(x) Boosting:从弱学习器开始加强&am…

概述

目的:让机器学习效果更好,单个不行,集成多个
集成算法
Bagging:训练多个分类器取平均
f ( x ) = 1 / M ∑ m = 1 M f m ( x ) f(x)=1/M\sum^M_{m=1}{f_m(x)} f(x)=1/Mm=1Mfm(x)
Boosting:从弱学习器开始加强,通过加权来进行训练
F m ( x ) = F m − 1 ( x ) + a r g m i n h ∑ i = 1 n L ( y i , F m − 1 ( x i ) + h ( x i ) ) F_m(x)=F_{m-1}(x)+argmin_h\sum^n_{i=1}L(y_i,F_{m-1}(x_i)+h(x_i)) Fm(x)=Fm1(x)+argminhi=1nL(yi,Fm1(xi)+h(xi))
(加入一棵树,新的树更关注之前错误的例子)
Stacking:聚合多个分类或回归模型(可以分阶段来做)

Bagging模型(随机森林)

全称: bootstrap aggregation(说白了就是并行训练一堆分类器)
最典型的代表就是随机森林,现在Bagging模型基本上也是随机森林。
image.png
随机:数据采样随机,每棵树只用部分数据;数据有多个特征(属性)组成,每棵树随机选择部分特征。随机是为了使得每个分类器拥有明显差异性。
森林:很多个决策树并行放在一起
如何对所有树选择最终结果?分类的话可以采取少数服从多数,回归的话可以采用取平均值。

集成基本思想

训练时用多种分类器一起完成同一份任务
image.png
测试时对待测试样本分别通过不同的分类器,汇总最后的结果
image.png

import numpy as np
import os
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
import warnings
warnings.filterwarnings('ignore')
np.random.seed(42)
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moonsX,y = make_moons(n_samples=500, noise=0.30, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
plt.plot(X[:,0][y==0],X[:,1][y==0],'yo',alpha = 0.6)
plt.plot(X[:,0][y==0],X[:,1][y==1],'bs',alpha = 0.6)

image.png
投票策略:软投票与硬投票

  • 硬投票:直接用类别值,少数服从多数
  • 软投票:各自分类器的概率值进行加权平均,或者自己就去概率值最大的作为结果

硬投票实验

from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC# 三种分类器,逻辑回归,随机森林,支持向量机
log_clf = LogisticRegression(random_state=42)
rnd_clf = RandomForestClassifier(random_state=42)
svm_clf = SVC(random_state=42)voting_clf = VotingClassifier(estimators =[('lr',log_clf),('rf',rnd_clf),('svc',svm_clf)],voting='hard')
voting_clf.fit(X_train,y_train)

image.png

from sklearn.metrics import accuracy_score
print('三种分类器的结果')
for clf in (log_clf,rnd_clf,svm_clf):clf.fit(X_train,y_train)y_pred = clf.predict(X_test)print (clf.__class__.__name__,accuracy_score(y_test,y_pred))
print('集成分类的硬投票结果(一般会在效果上有微量提升,但不会太大)')
voting_clf.fit(X_train,y_train)
y_pred = voting_clf.predict(X_test)
print (voting_clf.__class__.__name__,accuracy_score(y_test,y_pred))

结果输出:
三种分类器的结果
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
集成分类的结果(一般会在效果上有微量提升,但不会太大)
VotingClassifier 0.912

软投票实验

from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVClog_clf = LogisticRegression(random_state=42)
rnd_clf = RandomForestClassifier(random_state=42)
svm_clf = SVC(probability = True,random_state=42)voting_clf = VotingClassifier(estimators =[('lr',log_clf),('rf',rnd_clf),('svc',svm_clf)],voting='soft')
from sklearn.metrics import accuracy_score
print('三种分类器的结果')
for clf in (log_clf,rnd_clf,svm_clf):clf.fit(X_train,y_train)y_pred = clf.predict(X_test)print (clf.__class__.__name__,accuracy_score(y_test,y_pred))
print('集成分类的软投票结果(一般会在效果上有微量提升,但不会太大)')
voting_clf.fit(X_train,y_train)
y_pred = voting_clf.predict(X_test)
print (voting_clf.__class__.__name__,accuracy_score(y_test,y_pred))

结果输出:
三种分类器的结果
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
集成分类的硬投票结果(一般会在效果上有微量提升,但不会太大)
VotingClassifier 0.92
总结:软投票要求必须各个分别器都能得出概率值,一般来说软投票效果更好一些

http://www.rdtb.cn/news/20430.html

相关文章:

  • 做网站得叫什么软件seo学院培训班
  • 桂林两江四湖象山景区讲解导游词北京搜索引擎优化管理专员
  • wordpress插件地址seo快速排名软件案例
  • 西安微网站制作快手seo
  • 呼和浩特做网站的地方app开发平台
  • wordpress流量站今日新闻头条大事
  • 做视频的网站有哪些推广引流哪个软件最好
  • 杭州网站建设外包公司竞价托管怎么做
  • 域名注册解析管理网站淘宝搜索关键词技巧
  • 最近热点新闻头条吉林关键词优化的方法
  • 梧州网站设计理念最有效的广告宣传方式
  • 梅州市建设工程交易中心网站关键词排名关键词快速排名
  • it设备网站如何做seo亚马逊查关键词排名工具
  • 网页如何发布昆明seo培训
  • 南通北京网站建设做网站的平台有哪些
  • 微信网站建设费用计入什么科目企业营销推广方案
  • 如何为公司做网站优化器
  • 想开网店做丝绸生意去哪个网站批发推广方案100个
  • 甘肃公司网站建设哪家好客户营销
  • 网站做报表如何推广小程序
  • 金牌网站设计网站建设短视频营销案例
  • 苏州公司做网站企业关键词推广
  • 威海外贸网站建设联系方式跨境电商seo什么意思
  • 设计网站定制公司网络营销的未来发展趋势论文
  • 典型的b2b网站有哪些北京百度seo排名
  • 建站个人网站靠谱的seo收费
  • 可以做app的软件seo查询百科
  • 美国做调查网站目前最新推广平台
  • html网站二维码悬浮怎么做星巴克网络营销案例分析
  • 南京中如建设公司深圳seo排名哪家好