当前位置: 首页 > news >正文

企业网站开发的公司口碑营销的成功案例

企业网站开发的公司,口碑营销的成功案例,网站内页关键词密度,南海建设工程交易中心网站文章目录 1、简介1.1 whisper简介1.2 whisper模型 2、安装2.1 whisper2.2 pytorch2.3 ffmpeg 3、测试3.1 命令测试3.2 代码测试:识别声音文件3.3 代码测试:实时录音识别 结语 1、简介 https://github.com/openai/whisper 1.1 whisper简介 Whisper 是…

文章目录

  • 1、简介
    • 1.1 whisper简介
    • 1.2 whisper模型
  • 2、安装
    • 2.1 whisper
    • 2.2 pytorch
    • 2.3 ffmpeg
  • 3、测试
    • 3.1 命令测试
    • 3.2 代码测试:识别声音文件
    • 3.3 代码测试:实时录音识别
  • 结语

1、简介

https://github.com/openai/whisper
在这里插入图片描述

1.1 whisper简介

Whisper 是一种通用的语音识别模型。它是在包含各种音频的大型数据集上训练的,也是一个多任务模型,可以执行多语言语音识别、语音翻译和语言识别。

在这里插入图片描述
Open AI在2022年9月21日开源了号称其英文语音辨识能力已达到人类水准的Whisper神经网络,且它亦支持其它98种语言的自动语音辨识。 Whisper系统所提供的自动语音辨识(Automatic Speech Recognition,ASR)模型是被训练来运行语音辨识与翻译任务的,它们能将各种语言的语音变成文本,也能将这些文本翻译成英文。

1.2 whisper模型

以下是可用模型的名称及其相对于大型模型的近似内存要求和推理速度;实际速度可能因许多因素而异,包括可用的硬件。

SizeParametersEnglish-only modelMultilingual modelRequired VRAMRelative speed
tiny39 Mtiny.entiny~1 GB~32x
base74 Mbase.enbase~1 GB~16x
small244 Msmall.ensmall ~2 GB~6x
medium769 Mmedium.enmedium~5 GB~2x
large1550 MN/Alarge~10 GB1x

它自动下载的模型缓存,如下:
在这里插入图片描述

2、安装

2.1 whisper

pip install -U openai-whisper
# pip install git+https://github.com/openai/whisper.git 
pip install --upgrade --no-deps --force-reinstall git+https://github.com/openai/whisper.git
pip install zhconv
pip3 install wheelpip3 install torch torchvision torchaudio
# 注:没科学上网会下载有可能很慢,可以替换成国内镜像加快下载速度
pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

2.2 pytorch

https://pytorch.org/
选择的是稳定版,windows系统,pip安装方式,python语言、cpu版本的软件。
在这里插入图片描述

pip3 install torch torchvision torchaudio

2.3 ffmpeg

https://github.com/BtbN/FFmpeg-Builds/releases
在这里插入图片描述
解压后,找到bin文件夹下的“ffmpeg.exe”,将它复制到一个文件夹中,假设这个文件夹的路径是"D:\software\ffmpeg",然后将"D:/software/ffmpeg"添加到系统环境变量PATH。

3、测试

3.1 命令测试

whisper audio.mp3

在这里插入图片描述
以上whisper audio.mp3的命令形式是最简单的一种,它默认使用的是small模式的模型转写,我们还可以使用更高等级的模型来提高正确率。 比如:

whisper audio.mp3 --model medium
whisper japanese.wav --language Japanese
whisper chinese.mp4 --language Chinese --task translate
whisper audio.flac audio.mp3 audio.wav --model medium
whisper output.wav --model medium  --language Chinese

同时默认会生成5个文件,文件名和你的源文件一样,但扩展名分别是:.json、.srt、.tsv、.txt、.vtt。除了普通文本,也可以直接生成电影字幕,还可以调json格式做开发处理。
在这里插入图片描述
常用参数如下:

--task: 指定转录方式,默认使用 --task transcribe 转录模式,--task translate 则为 翻译模式,目前只支持翻译成英文。
--model:指定使用模型,默认使用 --model small,Whisper 还有 英文专用模型,就是在名称后加上 .en,这样速度更快。
--language:指定转录语言,默认会截取 30 秒来判断语种,但最好指定为某种语言,比如指定中文是 --language Chinese。
--device:指定硬件加速,默认使用 auto 自动选择,--device cuda 则为显卡,cpu 就是 CPU, mps 为苹果 M1 芯片。
--output_format:指定字幕文件的生成格式,txt,vtt,srt,tsv,json,all,指定多个可以用大括号{}包裹,不设置默认all。
-- output_dir: 指定字幕文件的输出目录,不设置默认输出到当前目录下。
--fp16:默认True,使用16位浮点数进行计算,可以在一定程度上减少计算和存储开销,可能存在精度丢失,笔者CPU不支持,会出现下述警告,指定它为False就不会出现了,即采用32位浮点数进行计算。

3.2 代码测试:识别声音文件

import whisperif __name__ == '__main__':model = whisper.load_model("tiny")result = model.transcribe("audio.mp3", fp16=False, language="Chinese")print(result["text"])

在这里插入图片描述

3.3 代码测试:实时录音识别

import whisper
import zhconv
import wave  # 使用wave库可读、写wav类型的音频文件
import pyaudio  # 使用pyaudio库可以进行录音,播放,生成wav文件def record(time):  # 录音程序# 定义数据流块CHUNK = 1024  # 音频帧率(也就是每次读取的数据是多少,默认1024)FORMAT = pyaudio.paInt16  # 采样时生成wav文件正常格式CHANNELS = 1  # 音轨数(每条音轨定义了该条音轨的属性,如音轨的音色、音色库、通道数、输入/输出端口、音量等。可以多个音轨,不唯一)RATE = 16000  # 采样率(即每秒采样多少数据)RECORD_SECONDS = time  # 录音时间WAVE_OUTPUT_FILENAME = "./output.wav"  # 保存音频路径p = pyaudio.PyAudio()  # 创建PyAudio对象stream = p.open(format=FORMAT,  # 采样生成wav文件的正常格式channels=CHANNELS,  # 音轨数rate=RATE,  # 采样率input=True,  # Ture代表这是一条输入流,False代表这不是输入流frames_per_buffer=CHUNK)  # 每个缓冲多少帧print("* recording")  # 开始录音标志frames = []  # 定义frames为一个空列表for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):  # 计算要读多少次,每秒的采样率/每次读多少数据*录音时间=需要读多少次data = stream.read(CHUNK)  # 每次读chunk个数据frames.append(data)  # 将读出的数据保存到列表中print("* done recording")  # 结束录音标志stream.stop_stream()  # 停止输入流stream.close()  # 关闭输入流p.terminate()  # 终止pyaudiowf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')  # 以’wb‘二进制流写的方式打开一个文件wf.setnchannels(CHANNELS)  # 设置音轨数wf.setsampwidth(p.get_sample_size(FORMAT))  # 设置采样点数据的格式,和FOMART保持一致wf.setframerate(RATE)  # 设置采样率与RATE要一致wf.writeframes(b''.join(frames))  # 将声音数据写入文件wf.close()  # 数据流保存完,关闭文件if __name__ == '__main__':model = whisper.load_model("tiny")record(3)  # 定义录音时间,单位/sresult = model.transcribe("output.wav",language='Chinese',fp16 = True)s = result["text"]s1 = zhconv.convert(s, 'zh-cn')print(s1)

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(✿◡‿◡)
感谢各位大佬童鞋们的支持!( ´ ▽´ )ノ ( ´ ▽´)っ!!!

http://www.rdtb.cn/news/20104.html

相关文章:

  • 网站开发项目组成员百度下载安装到桌面上
  • 泉州制作网页的网站互联网营销推广方案
  • 德德模板网站建设步骤媒体代发网站
  • 深圳网站建设好搜索广告优化
  • wordpress红色主题seo是怎么优化的
  • 专做外贸的网站有哪些seo推广百度百科
  • 建设网站的公司广州百度网址名称是什么
  • 濮阳市网站建设优化设计三要素
  • 帝国cms做漫画网站教程免费的网站推广在线推广
  • 安阳哪里有做网站的sem 优化软件
  • 外贸网站推广策划商业推广
  • wordpress接单修改任务游戏优化大师
  • 网站方案策划书会员营销
  • 网站seo分析搜索引擎营销的成功案例
  • 菜鸟式网站建设图书网络服务有限公司
  • 建设网站是什么网站模板平台资源
  • 简述网站建设基本流程图需要留电话号码的广告
  • vue做公司网站今日最新财经新闻
  • 阜宁做网站价格百度搜索引擎提交入口
  • 常州做网站yongjiawebcba最新积分榜
  • 建设银行 网站无法打开seo效果分析
  • 个人做排行网站学编程的正规学校
  • 易支付做网站接口怎么赚钱开网店如何运营和推广
  • 应用商店免费下载seo网络推广什么意思
  • 下载全网搜宁波免费seo排名优化
  • 百度快照搜索企业网站优化方案
  • 主网站下建立子目录站推广赚佣金
  • 网站建设费用如何做账百度做广告费用
  • 做五金上哪个网站推广b2b电子商务网
  • 芜湖哪些公司做公司网站数字营销案例