当前位置: 首页 > news >正文

wordpress在本地搭建网站优化排名

wordpress在本地搭建,网站优化排名,工行网站为何做的那么垃圾,专业网站设计推荐版本说明 当前版本号[20230729]。 版本修改说明20230729初版 目录 文章目录 版本说明目录知识总览图Python基础综合案例:数据可视化 - 折线图可视化json数据格式什么是jsonjson有什么用json格式数据转化Python数据和Json数据的相互转化 pyecharts模块介绍概况如何…

版本说明

当前版本号[20230729]。

版本修改说明
20230729初版

目录

文章目录

  • 版本说明
  • 目录
  • 知识总览图
  • Python基础综合案例:数据可视化 - 折线图可视化
    • json数据格式
      • 什么是json
      • json有什么用
      • json格式数据转化
      • Python数据和Json数据的相互转化
    • pyecharts模块介绍
      • 概况
      • 如何查看官方示例
    • pyecharts快速入门
      • 基础折线图
        • pyecharts有哪些配置选项
        • set_global_opts方法
    • 数据处理
    • 创建折线图
      • 导入模块
      • 折线图相关配置项
      • 创建折线图
      • 添加数据
      • .add_yaxis相关配置选项
      • set_global_opts全局配置选项

知识总览图

image-20230729173136363

Python基础综合案例:数据可视化 - 折线图可视化

效果一:2020年印美日新冠累计确诊人数

​ 2020年是新冠疫情爆发的一年, 随着疫情的爆发, 国内外确诊人数成了大家关心的热点, 相信大家都有看过类似的疫情报告. 本案例对印度美国日本三个国家确诊人数的进行了可视化处理, 形成了可视化的疫情确诊人数报告.

image-20230609104059832

效果二:全国疫情地图可视化

image-20230609104123982

效果三:动态GDP增长图

image-20230609104155942

数据来源

本案例数据全部来自 <<百度疫情实时大数据报告>>,及公开的全球各国GDP数据

使用的技术

Echarts 是个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可. 而 Python 是门富有表达力的语言,很适合用于数据处理. 当数据分析遇上数据可视化时pyecharts 诞生了.

image-20230609104300087

json数据格式

什么是json

  • JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据
  • JSON本质上是一个带有特定格式字符串

主要功能:json就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互. 类似于:

  • 国际通用语言-英语
  • 中国56个民族不同地区的通用语言-普通话

json有什么用

​ 各种编程语言存储数据的容器不尽相同,在Python中有字典dict这样的数据类型, 而其它语言可能没有对应的字典。

​ 为了让不同的语言都能够相互通用的互相传递数据,JSON就是一种非常良好的中转数据格式。如下图,以Python和C语言互传数据为例:

image-20230609110322703

json格式数据转化

json格式的数据要求很严格, 下面我们看一下他的要求

# json数据的格式可以是: 
{"name":"admin","age":18} # 也可以是:  
[{"name":"admin","age":18},{"name":"root","age":16},{"name":"张三","age":20}] 

Python数据和Json数据的相互转化

# 导入json模块
import json# 准备符合格式json格式要求的python数据
data = [{"name": "老王", "age": 16}, {"name": "张三", "age": 20}]# 通过 json.dumps(data) 方法把python数据转化为了 json数据
json_data = json.dumps(data, ensure_ascii=False)
print(type(json_data))
print(f"python数据转化为了json数据的结果:{json_data}")# 通过 json.loads(data) 方法把json数据转化为了 python数据 
python_data = json.loads(json_data)
print(type(python_data))
print(f"json数据转化为了python数据的结果:{python_data}")

结果如下:(可见json和python里面对元素要求的格式也不一样,一个双引号一个单引号)

image-20230609112037725

注:

通过 json.dumps(data) 方法把python数据转化为了 json数据

data = json.dumps(data)

如果有中文可以带上:ensure_ascii=False参数来确保中文正常转换

通过 json.loads(data) 方法把josn数据转化为了 python列表或字典

data = json.loads(data)

pyecharts模块介绍

​ 如果想要做出数据可视化效果图, 可以借助pyecharts模块来完成

概况

Echarts 是个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可. 而 Python 是门富有表达力的语言,很适合用于数据处理.

​ 当数据分析遇上数据可视化时pyecharts 诞生了.

如何查看官方示例

打开官方画廊:

https://gallery.pyecharts.org/#/README

使用在前面学过的pip命令即可快速安装PyEcharts模块

pip install pyecharts

pyecharts快速入门

基础折线图

image-20230609115259501

示例代码:

from pyecharts.charts import Line
line = Line()
line.add_xaxis(["炸鸡", "薯条", "汉堡"])
line.add_yaxis("价格", [45, 33, 23])
line.render()

生成图表:

image-20230609115344959

pyecharts有哪些配置选项

lpyecharts模块中有很多的配置选项, 常用到2个类别的选项:

  • 全局配置选项
  • 系列配置选项

set_global_opts方法

​ 这里全局配置选项可以通过set_global_opts方法来进行配置, 相应的选项和选项的功能如下:

image-20230609144702397

​ 全局配置项能做什么?

  • 配置图表的标题

  • 配置图例

  • 配置鼠标移动效果

  • 配置工具栏

  • 等整体配置项

    ​ 系列配置项,我们在后面构建案例时讲解

数据处理

原始数据格式:

image-20230609150317430

导入模块:

image-20230609150356987

再根据层级,一步步地去获取:

image-20230716151704489

对数据进行整理, 让数据符合json格式:

import json
f_us = open("F:/美国.txt", "r", encoding="UTF-8")//打开文件
us_data = f_us.read()//全部读出来# 把不符合json数据格式的 "jsonp_1629344292311_69436(" 去掉 ,再赋值回us_data
us_data = us_data.replace("jsonp_1629344292311_69436(", "")# 把不符合json数据格式的 ");" 去掉,从后往前数去掉最后两个字节
us_data = us_data[:-2]# 数据格式符合json格式后,对数据进行转化成字典
us_dict = json.loads(us_data)# 获取美国的疫情数据 
trend_data = us_dict['data'][0]['trend']# x1_data存放2020年日期数据 
x_data = trend_data['updateDate'][:314]# y1_data存放2020年人数数据 
y_data = trend_data['list'][0]['data'][:314]print(x_data)
print(y_data)

创建折线图

导入模块

image-20230609163534246

折线图相关配置项

image-20230609163608521

创建折线图

image-20230609163630167

  • 这里的Line()是构建类对象,我们先不必理解是什么意思,后续在Python高阶中进行详细讲解。
  • 目前我们简单的会用即可

添加数据

image-20230609163715410

.add_yaxis相关配置选项

image-20230609163801942

set_global_opts全局配置选项

.set_global_opts(# 设置图标题和位置 title_opts=opts.TitleOpts(title="2020年 印🇮🇳美🇺🇸日🇯🇵 累计确诊人数对比图",pos_left="center"), # x轴配置项 xaxis_opts=opts.AxisOpts(name=“时间”),    # 轴标题 # y轴配置项 yaxis_opts=opts.AxisOpts(name=“累计确诊人数”),    # 轴标题 # 图例配置项 legend_opts=opts.LegendOpts(pos_left=70%),    # 图例的位置 
)

示例代码:

import json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LabelOpts, LegendOpts, ToolboxOpts, AxisPointerOptsf_us = open("F:/美国.txt", "r", encoding="UTF-8")
f_jp = open("F:/日本.txt", "r", encoding="UTF-8")
f_in = open("F:/印度.txt", "r", encoding="UTF-8")us_data = f_us.read()
jp_data = f_jp.read()
in_data = f_in.read()us_data = us_data.replace("jsonp_1629344292311_69436(", "")
jp_data = jp_data.replace("jsonp_1629350871167_29498(", "")
in_data = in_data.replace("jsonp_1629350745930_63180(", "")us_data = us_data[:-2]
jp_data = jp_data[:-2]
in_data = in_data[:-2]us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)trendus_data = us_dict['data'][0]['trend']
trendjp_data = jp_dict['data'][0]['trend']
trendin_data = in_dict['data'][0]['trend']us_x_data = trendus_data['updateDate'][:314]
jp_x_data = trendjp_data['updateDate'][:314]
in_x_data = trendin_data['updateDate'][:314]us_y_data = trendus_data['list'][0]['data'][:314]
jp_y_data = trendjp_data['list'][0]['data'][:314]
in_y_data = trendin_data['list'][0]['data'][:314]epidemic_line = Line()  //构建折线图对象
epidemic_line.add_xaxis(us_x_data)  //x轴上的数据是共用的,所以使用一个国家的数据即可
epidemic_line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))
epidemic_line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))
epidemic_line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))
//label_opts=LabelOpts(is_show=False) 是指不显示标签上的数字,看起来就不会那么杂epidemic_line.set_global_opts(title_opts=TitleOpts(title="2020年美日印确诊人数对比折线图", pos_left="center", pos_bottom="1%"),legend_opts=LegendOpts(is_show=True),toolbox_opts=ToolboxOpts(is_show=True),axispointer_opts=AxisPointerOpts()
)#调用方法,生成图表
epidemic_line.render()#关闭文件对象
f_us.close()
f_jp.close()
f_in.close()

折现图以下:

image-20230609164006615

http://www.rdtb.cn/news/18778.html

相关文章:

  • 用电脑做兼职的网站比较好网络广告策划书案例
  • 棋牌网站开发需要多少钱电商运营培训哪个机构好
  • 官方网站手机江西优化中心
  • net网站开发环境淘特app推广代理
  • 公关就是陪人睡觉吗站内关键词排名优化软件
  • 临安做网站的公司宿迁网站建设制作
  • 学做披萨的网站pc网站建设和推广
  • 做网站学cdr吗优化排名 生客seo
  • wordpress目录页去掉关键词优化排名公司
  • 万江做网站营销渠道策划方案
  • 有哪些专门做展会创意的网站营销方法
  • 室内装饰设计专业介绍谷歌优化的网络公司
  • wordpress 珠宝主题seo课程培训学校
  • 商城类网站设计制作购买友情链接网站
  • 织梦中英网站怎么做seo专业培训技术
  • 广州微网站建设服务掌门一对一辅导官网
  • 网站建设工期安排表免费网站统计
  • 如何创建blog页面wordpress免费seo搜索优化
  • 哪个网站有学做内帐的视频广告推广系统
  • 做网站要提供营业执照吗销售渠道都有哪些
  • 做网站后租服务器一年多少钱长尾关键词爱站网
  • 北京矿建建设集团有限公司网站企业宣传方式
  • 如何购买网站最有吸引力的营销模式
  • 怎么做淘宝联盟网站国际要闻
  • Apache局域网网站制作bt磁力王
  • 有哪些做二手的网站网站查询系统
  • 武汉双军网站建设公司 概况seo综合查询网站
  • 电商网站开发工程师北京seo经理
  • 四川建设网站公司百度广告买下的订单在哪里找
  • 网站建设怎么建设影视后期培训机构全国排名