当前位置: 首页 > news >正文

网站域名做301查排名官网

网站域名做301,查排名官网,网站做推广,长沙建网站的文章目录 前言一、Python全局128二、Python全局均值三、Python全局OTSU四、FPGA全局128总结 前言 为什么要进行图像二值化,rgb图像有三个通道,处理图像的计算量较大,二值化的图像极大的减少了处理图像的计算量。即便从彩色图像转成了二值化图…

文章目录

  • 前言
  • 一、Python全局128
  • 二、Python全局均值
  • 三、Python全局OTSU
  • 四、FPGA全局128
  • 总结


前言

  为什么要进行图像二值化,rgb图像有三个通道,处理图像的计算量较大,二值化的图像极大的减少了处理图像的计算量。即便从彩色图像转成了二值化图像,也不影响对物体的识别。本章开始讲解图像二值化。Python包含全局128、全局均值、大津阈值法(OTSU);FPGA只做全局128的讲解。


一、Python全局128

import numpy as np
import matplotlib.pyplot as plt
img = plt.imread("lenna.png")
gray = 0.299 * img[:, :, 0] + 0.587 * img[:, :, 1] + 0.114 * img[:, :, 2] 
gray = gray * 255#图像是[0-1]--->[0-255]
bin_image = np.where(gray >= 128, 255, 0)#全局二值化
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 2, 1)
ax.set_title("gray image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("binary image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(bin_image, cmap="gray")

在这里插入图片描述


二、Python全局均值

mean_image = np.where(gray > np.mean(gray), 255, 0)#全局均值
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 2, 1)
ax.set_title("gray image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("mean image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(mean_image, cmap="gray")

在这里插入图片描述


三、Python全局OTSU

  OTSU是阈值分割中一种常用的算法,它可以根据图像自动生成最佳分割阈值。 OTSU的核心思想是类间方差最大化。

  1. 初始化一个阈值T0,将图像分为前景f和背景b;
  2. 图像像素点个数为图像N=height x width,前景像素个数Nf,背景像素个数Nb;
  3. 图像灰度等级L-1(0~255=256),每个灰度等级像素个数Ni,满足以下公式:

P f = ∑ i = 0 i = T 0 N i N P b = ∑ i = T 0 i = L − 1 N i N (1) Pf = \sum_{i = 0}^{i=T0}\frac{Ni}{N} \quad\quad Pb= \sum_{i = T0}^{i=L-1}\frac{Ni}{N}\tag{1} Pf=i=0i=T0NNiPb=i=T0i=L1NNi(1)

  1. 前景和背景的灰度平均值分别为:

M f = ∑ i = 0 i = T 0 i × P i P f M b = ∑ i = T 0 i = L − 1 i × P i P b (2) Mf = \sum_{i = 0}^{i=T0}i \times \frac{Pi}{Pf} \quad\quad Mb= \sum_{i = T0}^{i=L-1}i\times\frac{Pi}{Pb}\tag{2} Mf=i=0i=T0i×PfPiMb=i=T0i=L1i×PbPi(2)

  1. 整个图像灰度平均值:
    M = P f × M f + P b × M b (3) M = Pf \times Mf + Pb \times Mb\tag{3} M=Pf×Mf+Pb×Mb(3)

  2. 求前景和背景之间的方差:
    σ 2 = P f × ( M f − M ) 2 + P b × ( M b − M ) 2 (4) \sigma^2 = Pf\times(Mf-M)^2 + Pb \times(Mb-M)^2\tag{4} σ2=Pf×(MfM)2+Pb×(MbM)2(4)

  3. 找到阈值T0,使得公式4最大;

  4. 怎么找?可以采用优化算法,本文中直接遍历灰度等级,查找最优阈值。

"""
统计像素点函数
image: 输入灰度图(ndarray)
reutrn: {像素:个数}(dict)
"""
def pixel_num(image):h, w = image.shapepdict = {}for i in range(h):for j in range(w):if image[i,j] in pdict:pdict[image[i,j]] += 1else:pdict[image[i,j]] = 0return pdict"""
求公式4中sigma2的值
T0: 预设阈值(int)
gray: 灰度图(ndarray)
L: 灰度等级(int)
"""
def sigma2(T0, gray, L=256):h, w = gray.shapeN = h * wpdict = pixel_num(gray)pf = sum([v for k,v in pdict.items() if k < T0]) / N#公式1pb = sum([v for k,v in pdict.items() if k >= T0]) / N#公式1pf = [pf if pf > 1e-6 else 1e-6][0]#控制最小值,避免除以0pb = [pb if pb > 1e-6 else 1e-6][0]#控制最小值,避免除以0mf = sum([k * pdict.get(k, 0) / N for k in range(T0)]) / pf#公式2mb = sum([k * pdict.get(k, 0) / N for k in range(T0, L)]) / pb#公式2M = pf * mf + pb * mb#公式3s2 = pf * (mf - M) ** 2 + pb * (mb - M) ** 2#公式4return s2, T0"""
遍历查找最大sigma2
gray: 灰度图(ndarray)
L: 灰度等级(int)
"""
def otsu(gray, L=256):smax = 0tmax = 0for t in range(1, L):s2, T0 = sigma2(t, gray, L)if s2 > smax:smax = s2tmax = T0return smax, tmax"""
根据最佳阈值求二值化图像
threshold: 最佳阈值(int)
return: 二值化图像(ndarray)
"""
def otsu_threshold(max_threshold, gray):threshold = np.mean(gray)binary = np.where(gray >= max_threshold, 255, 0)return binarysmax, tmax = otsu(gray, 256)  
otsu_image = otsu_threshold(tmax, gray)
plt.figure(figsize=(10,10))
ax = plt.subplot(1, 2, 1)
ax.set_title("gray image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("otsu image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(otsu_image, cmap="gray")

在这里插入图片描述
  大津阈值法计算量较大,FPGA实现没有意义。


四、FPGA全局128

module  ycbcr2binary_global
(input	wire			vga_clk		,input	wire			sys_rst_n	,input	wire	[7:0]	y_data	    ,input   wire            rgb_valid   ,output	reg		[15:0]	binary_data
);
wire [7: 0] temp;
reg        y_valid;
assign temp = (y_data >= 8'd128)? 8'd255: 8'd0;	always @(posedge vga_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)y_valid <= 1'b0;elsey_valid <= rgb_valid;always@(posedge vga_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)binary_data  <=  16'd0  ;else if(y_valid == 1'b1)binary_data  <=  {temp[7:3], temp[7:2], temp[7:3]};elsebinary_data <= binary_data;
endmodule

在这里插入图片描述


总结

  全局二值化都比较基础,Python与FPGA实现都较为简单。下期讨论难度升级的局部二值化,敬请期待。

http://www.rdtb.cn/news/18543.html

相关文章:

  • 管理网站建设哪里好网上接单平台
  • 中山建网站公司seo网络推广企业
  • 网络销售网站有哪些长春网站优化平台
  • 旅游网站的导航怎么做新手小白怎么做跨境电商
  • 网站域名购买后能修改吗seo服务商排名
  • 网站建设青岛公司关键词推广软件排名
  • 电子商务网站建设期末试题及答案seo技术外包公司
  • 做图的模板下载网站有哪些内容厨师培训机构 厨师短期培训班
  • 建一个个人网站一年多少钱活动推广方案策划
  • 电子商务网站建设期末试题西安优化seo
  • 营销网站怎样做近期国际新闻20条
  • 上海公司做网站怎么设计网站
  • 环保网站源码百度seo霸屏软件
  • 网站开发国外研究状况网站关键词百度自然排名优化
  • wordpress4.9中文主题资源网站优化排名优化
  • 网站是用dw做的吗盐城seo优化
  • 网站建设推广军事新闻 今日关注
  • 警惕成人网站免费看手机天津网络推广公司
  • 什么叫营销型网站无锡网站优化公司
  • 鄂州做网站公司西安竞价托管代运营
  • 成都 网站建设淄博seo培训
  • 看希岛爱理做品的网站移投界seo
  • CQ网站建设成都网络营销
  • 个性化网站建设公司营销方案怎么写?
  • 滨州网站建设公司网络小说网站三巨头
  • 上海专业做网站较好的公司长春免费网上推广
  • 你做的网站可视区域多少钱微信营销策略
  • 优化网站和网站建设网上推广平台
  • 网站知识介绍做网站多少钱
  • 网站自己做的记者证网络营销论坛