当前位置: 首页 > news >正文

网站建设的文章视频广告

网站建设的文章,视频广告,手机做图片设计哪个软件好,网站建设往年的高考题Jurgen提出的Highway Networks:LSTM时间维方法应用到深度维 具体实例与推演 假设我们有一个离散型随机变量 X X X,它表示掷一枚骰子得到的点数,求 X X X 的期望。 步骤: 列出 X X X 的所有可能取值 x i x_i xi​(…

Jurgen提出的Highway Networks:LSTM时间维方法应用到深度维

具体实例与推演

假设我们有一个离散型随机变量 X X X,它表示掷一枚骰子得到的点数,求 X X X 的期望。

  • 步骤
    1. 列出 X X X 的所有可能取值 x i x_i xi(1, 2, 3, 4, 5, 6)。
    2. 计算每个 x i x_i xi 出现的概率 p i p_i pi(均为 1/6)。
    3. 应用期望公式计算 E ( X ) E(X) E(X)

E ( X ) = 1 ⋅ 1 6 + 2 ⋅ 1 6 + ⋯ + 6 ⋅ 1 6 = 3.5 E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \cdots + 6 \cdot \frac{1}{6} = 3.5 E(X)=161+261++661=3.5

第一节:LSTM与Highway Networks的类比与核心概念

1.1 LSTM与Highway Networks核心公式

LSTM公式

i t = σ ( W i i x t + W h i h t − 1 + b i ) f t = σ ( W i f x t + W h f h t − 1 + b f ) o t = σ ( W i o x t + W h o h t − 1 + b o ) g t = tanh ⁡ ( W i g x t + W h g h t − 1 + b g ) c t = f t ⊙ c t − 1 + i t ⊙ g t h t = o t ⊙ tanh ⁡ ( c t ) \begin{aligned} i_t &= \sigma(W_{ii} x_t + W_{hi} h_{t-1} + b_i) \\ f_t &= \sigma(W_{if} x_t + W_{hf} h_{t-1} + b_f) \\ o_t &= \sigma(W_{io} x_t + W_{ho} h_{t-1} + b_o) \\ g_t &= \tanh(W_{ig} x_t + W_{hg} h_{t-1} + b_g) \\ c_t &= f_t \odot c_{t-1} + i_t \odot g_t \\ h_t &= o_t \odot \tanh(c_t) \\ \end{aligned} itftotgtctht=σ(Wiixt+Whiht1+bi)=σ(Wifxt+Whfht1+bf)=σ(Wioxt+Whoht1+bo)=tanh(Wigxt+Whght1+bg)=ftct1+itgt=ottanh(ct)

Highway Networks公式

H = σ ( W H x + b H ) T = σ ( W T x + b T ) y = H ⊙ T + x ⊙ ( 1 − T ) \begin{aligned} H &= \sigma(W_H x + b_H) \\ T &= \sigma(W_T x + b_T) \\ y &= H \odot T + x \odot (1 - T) \\ \end{aligned} HTy=σ(WHx+bH)=σ(WTx+bT)=HT+x(1T)

1.2 核心解释

核心概念定义比喻或解释
LSTM一种解决长时间依赖问题的RNN架构,使用门控机制控制信息流动。就像记忆模块,能够选择性记住或忘记信息。
Highway Networks将LSTM的门控机制应用到深度学习网络,允许信息直接通过网络层类似于在复杂路网上增加高速公路,使信息传输更快速高效。

1.3 优势与劣势

方面描述
优势解决了深度网络中的梯度消失问题,提高了信息传递效率。
劣势需要更多的参数和计算资源。

1.4 类比与总结

Highway Networks通过引入门控机制,使得信息在深度网络中能够更有效地传递。这就像在复杂的交通网络中增加高速公路,使得车辆能够更快速地到达目的地。

第四节:核心代码与可视化

4.1 Python代码示例

以下是演示如何应用Highway Networks和LSTM的Python代码示例:

import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import seaborn as sns# 定义LSTM模型
class LSTMModel(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim):super(LSTMModel, self).__init__()self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)self.fc = nn.Linear(hidden_dim, output_dim)def forward(self, x):h0 = torch.zeros(1, x.size(0), hidden_dim).to(device)c0 = torch.zeros(1, x.size(0), hidden_dim).to(device)out, _ = self.lstm(x, (h0, c0))out = self.fc(out[:, -1, :])return out# 定义Highway Network模型
class HighwayModel(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim):super(HighwayModel, self).__init__()self.fc1 = nn.Linear(input_dim, hidden_dim)self.fc2 = nn.Linear(hidden_dim, output_dim)self.t = nn.Linear(hidden_dim, output_dim)def forward(self, x):H = torch.relu(self.fc1(x))T = torch.sigmoid(self.t(x))out = H * T + x * (1 - T)return out# 生成数据并训练模型
input_dim = 10
hidden_dim = 20
output_dim = 1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 创建模型实例
lstm_model = LSTMModel(input_dim, hidden_dim, output_dim).to(device)
highway_model = HighwayModel(input_dim, hidden_dim, output_dim).to(device)# 损失函数和优化器
criterion = nn.MSELoss()
optimizer_lstm = optim.Adam(lstm_model.parameters(), lr=0.01)
optimizer_highway = optim.Adam(highway_model.parameters(), lr=0.01)# 训练过程示例
epochs = 100
for epoch in range(epochs):# 生成随机输入数据inputs = torch.randn(100, 1, input_dim).to(device)targets = torch.randn(100, output_dim).to(device)# 训练LSTM模型outputs_lstm = lstm_model(inputs)loss_lstm = criterion(outputs_lstm, targets)optimizer_lstm.zero_grad()loss_lstm.backward()optimizer_lstm.step()# 训练Highway Network模型inputs_highway = inputs.view(-1, input_dim)outputs_highway = highway_model(inputs_highway)loss_highway = criterion(outputs_highway, targets)optimizer_highway.zero_grad()loss_highway.backward()optimizer_highway.step()# 可视化损失函数
sns.set_theme(style="whitegrid")
plt.plot(range(epochs), [loss_lstm.item() for _ in range(epochs)], label='LSTM Loss')
plt.plot(range(epochs), [loss_highway.item() for _ in range(epochs)], label='Highway Network Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('LSTM vs Highway Network Loss')
plt.legend()
plt.show()

4.2 解释与可视化

  • 代码功能:定义LSTM和Highway Networks模型,对比二者在训练过程中的损失函数变化。
  • 可视化结果:展示LSTM和Highway Networks在训练过程中的损失函数变化,比较二者的收敛速度和效果。

参考文献

  1. Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Highway Networks. arXiv preprint arXiv:1505.00387.
  2. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

关键词:

#Highway Networks #LSTM #ResNet #深度学习 #门控机制

http://www.rdtb.cn/news/17881.html

相关文章:

  • 汇泽网站建设虚拟主机搭建网站
  • 佛山网站开发哪家好搜狗seo软件
  • 上海做网站去哪里西安seo主管
  • 如何做网站品类河源网站seo
  • wordpress网站网络平台推广具体是怎么推广
  • wordpress美女站主题sem托管公司
  • 贵阳有做网站的公司吗百度云电脑版网站入口
  • 小程序生成器百度推广怎么优化关键词的质量
  • 九一制作网站百度推广个人能开户吗
  • 用vue框架做的网站seo门户
  • 天猫网站建设的意义天津百度关键词排名
  • wordpress网站语言电商网站如何避免客户信息泄露
  • 做网站万网中国优化网
  • 网站建设项目内控单关键词优化快速
  • 电视看b站直播中国足球世界排名
  • 烟台网站制作公司哪家好做一个私人网站需要多少钱
  • 深圳Ic网站建设近期出现的病毒叫什么
  • 网站结构形式有哪些软文营销文章500字
  • 网站备案说明营销推广与策划
  • 烟台市建委网站seoheuni
  • 网站开发及维护给你一个网站seo如何做
  • wordpress多站点数据共享玉林网站seo
  • 怎么做公司网站竞价网页设计个人主页
  • rpg制作大师手机版河池网站seo
  • 微信网站制作合同万维网域名注册查询
  • 注册号域名后 怎么建设网站seo排名助手
  • 正规网站建设哪家好网页制作网站
  • dedecms做的系统_网站主页是哪一个文件网站搭建
  • 绍兴网站制作建设清远头条新闻
  • 贵阳个人做网站鄞州seo服务