当前位置: 首页 > news >正文

新疆建设厅官方网站资质公告新东方厨师学费价目表

新疆建设厅官方网站资质公告,新东方厨师学费价目表,网络推广活动方案主题和思路,郑州网站设计见效快文章目录矩阵生成与常用操作矩阵生成矩阵转置查看矩阵特性矩阵乘法计算相关系数矩阵计算方差、协方差、标准差计算特征值与特征向量计算逆矩阵求解线性方程组奇异值分解函数向量化矩阵生成与常用操作 矩阵生成 扩展库numpy中提供的matrix()函数可以用来把列表、元组、range对…

文章目录

  • 矩阵生成与常用操作
    • 矩阵生成
    • 矩阵转置
    • 查看矩阵特性
    • 矩阵乘法
    • 计算相关系数矩阵
    • 计算方差、协方差、标准差
  • 计算特征值与特征向量
  • 计算逆矩阵
  • 求解线性方程组
  • 奇异值分解
  • 函数向量化

矩阵生成与常用操作

矩阵生成

扩展库numpy中提供的matrix()函数可以用来把列表、元组、range对象等Python可迭代对象转换为矩阵。

>>> import numpy as np
>>> x=np.matrix([[1,2,3],[4,5,6]])
>>> y=np.matrix([1,2,3,4,5,6])
>>> # 对矩阵x来说,x[1,1]和x[1][1]的含义不一样
>>> x
matrix([[1, 2, 3],[4, 5, 6]])
>>> y
matrix([[1, 2, 3, 4, 5, 6]])
>>> x[1,1]
5

矩阵转置

>>> x.T
matrix([[1, 4],[2, 5],[3, 6]])
>>> y.T
matrix([[1],[2],[3],[4],[5],[6]])

查看矩阵特性

>>> x=np.matrix([[1,2,3],[4,5,6]])
>>> x.mean() # 所有元素平均值
3.5
>>> x.mean(axis=0) # 纵向平均值
matrix([[2.5, 3.5, 4.5]])
>>> x.mean(axis=1) # 横向平均值
matrix([[2.],[5.]])
>>> x.sum() # 所有元素之和
21
>>> x.max(axis=1) # 横向最大值
matrix([[3],[6]])
>>> x.argmax(axis=1) # 横向最大值下标
matrix([[2],[2]], dtype=int64)
>>> x.diagonal() # 对角线元素
matrix([[1, 5]])
>>> x.nonzero() # 非0元素下标
(array([0, 0, 0, 1, 1, 1], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64))
>>> # 行下标列表和列下标列表

矩阵乘法

一个mxp的矩阵和一个pxn的矩阵,它们的乘积为一个mxn的矩阵

>>> x=np.matrix([[1,2,3],[4,5,6]])
>>> y=np.matrix([[1,2],[3,4],[5,6]])
>>> x*y
matrix([[22, 28],[49, 64]])

计算相关系数矩阵

>>> np.corrcoef([1,2,3,4],[4,3,2,1]) # 负相关,变化反向相反
array([[ 1., -1.],[-1.,  1.]])
>>> np.corrcoef([1,2,3,4],[8,3,2,1]) # 负相关,变化反向相反
array([[ 1.        , -0.91350028],[-0.91350028,  1.        ]])
>>> np.corrcoef([1,2,3,4],[1,2,3,4]) # 正相关,变化反向一致
array([[1., 1.],[1., 1.]])
>>> np.corrcoef([1,2,3,4],[1,2,3,40]) # 正相关,变化趋势接近
array([[1.       , 0.8010362],[0.8010362, 1.       ]])

计算方差、协方差、标准差

>>> np.cov([1,1,1,1,1]) # 方差
array(0.)
>>> np.std([1,1,1,1,1]) # 标准差
0.0
>>> x=[-2.1,-1,4.3]
>>> y=[3,1.1,0.12]
>>> X=np.vstack((x,y))
>>> X
array([[-2.1 , -1.  ,  4.3 ],[ 3.  ,  1.1 ,  0.12]])
>>> np.cov(X) # 协方差
array([[11.71      , -4.286     ],[-4.286     ,  2.14413333]])
>>> np.cov(x,y)
array([[11.71      , -4.286     ],[-4.286     ,  2.14413333]])
>>> np.std(X) # 标准差
2.2071223094538484
>>> np.std(X,axis=1)
array([2.79404128, 1.19558447])
>>> np.cov(x) # 方差
array(11.71)

计算特征值与特征向量

>>> A=np.array([[1,-3,3],[3,-5,3],[6,-6,4]])
>>> e,v=np.linalg.eig(A) # 特征值与特征向量
>>> e
array([ 4.+0.00000000e+00j, -2.+1.10465796e-15j, -2.-1.10465796e-15j])
>>> v
array([[-0.40824829+0.j        ,  0.24400118-0.40702229j,0.24400118+0.40702229j],[-0.40824829+0.j        , -0.41621909-0.40702229j,-0.41621909+0.40702229j],[-0.81649658+0.j        , -0.66022027+0.j        ,-0.66022027-0.j        ]])
>>> np.dot(A,v) # 矩阵与特征向量的乘积
array([[-1.63299316+0.00000000e+00j, -0.48800237+8.14044580e-01j,-0.48800237-8.14044580e-01j],[-1.63299316+0.00000000e+00j,  0.83243817+8.14044580e-01j,0.83243817-8.14044580e-01j],[-3.26598632+0.00000000e+00j,  1.32044054-5.55111512e-16j,1.32044054+5.55111512e-16j]])
>>> e*v # 特征值与特征向量的乘积
array([[-1.63299316+0.00000000e+00j, -0.48800237+8.14044580e-01j,-0.48800237-8.14044580e-01j],[-1.63299316+0.00000000e+00j,  0.83243817+8.14044580e-01j,0.83243817-8.14044580e-01j],[-3.26598632+0.00000000e+00j,  1.32044054-7.29317578e-16j,1.32044054+7.29317578e-16j]])
>>> np.isclose(np.dot(A,v),e*v) # 验证两者是否相等
array([[ True,  True,  True],[ True,  True,  True],[ True,  True,  True]])

计算逆矩阵

>>> x=np.matrix([[1,2,3],[4,5,6],[7,8,0]])
>>> y=np.linalg.inv(x) # 计算逆矩阵
>>> y
matrix([[-1.77777778,  0.88888889, -0.11111111],[ 1.55555556, -0.77777778,  0.22222222],[-0.11111111,  0.22222222, -0.11111111]])
>>> x*y # 对角线元素为1,其他元素为0或近似为0
matrix([[ 1.00000000e+00,  5.55111512e-17,  1.38777878e-17],[ 5.55111512e-17,  1.00000000e+00,  2.77555756e-17],[ 1.77635684e-15, -8.88178420e-16,  1.00000000e+00]])
>>> y*x
matrix([[ 1.00000000e+00, -1.11022302e-16,  0.00000000e+00],[ 8.32667268e-17,  1.00000000e+00,  2.22044605e-16],[ 6.93889390e-17,  0.00000000e+00,  1.00000000e+00]])

求解线性方程组

{a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...an1x1+an2x2+...+annxn=bn\begin{cases} a11x1+a12x2+...+a1nxn=b1\\ a21x1+a22x2+...+a2nxn=b2\\ ...\\ an1x1+an2x2+...+annxn=bn\\ \end{cases}a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...an1x1+an2x2+...+annxn=bn
可以写作矩阵相乘的形式 ax=b
其中,a为nxn的矩阵,x和b为nx1的矩阵

>>> a=np.array([[3,1],[1,2]]) # 系数矩阵
>>> b=np.array([9,8]) # 系数矩阵
>>> x=np.linalg.solve(a,b) # 求解
>>> x
array([2., 3.])
>>> np.dot(a,x) # 验证
array([9., 8.])
>>> np.linalg.lstsq(a,b) # 最小二乘解,返回解、余项、a的秩、a的奇异值Warning (from warnings module):File "<pyshell#77>", line 1
FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.
(array([2., 3.]), array([], dtype=float64), 2, array([3.61803399, 1.38196601]))
>>>

有报错不要慌

>>> np.linalg.lstsq(a,b,rcond=None) # 最小二乘解,返回解、余项、a的秩、a的奇异值
(array([2., 3.]), array([], dtype=float64), 2, array([3.61803399, 1.38196601]))

可以写个方程去尝试一下,我试了一下,应该是没有问题的。

奇异值分解

把矩阵a分解为u*np.diag(s)*v的形式并返回u、s和v。其中数组s中的元素是矩阵a的元素值

>>> import numpy as np
>>> a=np.matrix([[1,2,3],[4,5,6],[7,8,9]])
>>> u,s,v=np.linalg.svd(a) # 奇异值分解
>>> u
matrix([[-0.21483724,  0.88723069,  0.40824829],[-0.52058739,  0.24964395, -0.81649658],[-0.82633754, -0.38794278,  0.40824829]])
>>> s
array([1.68481034e+01, 1.06836951e+00, 4.41842475e-16])
>>> v
matrix([[-0.47967118, -0.57236779, -0.66506441],[-0.77669099, -0.07568647,  0.62531805],[-0.40824829,  0.81649658, -0.40824829]])
>>> u*np.diag(s)*v # 验证
matrix([[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]])

函数向量化

>>> mat=np.matrix([[1,2,3],[4,5,6]])
>>> mat
matrix([[1, 2, 3],[4, 5, 6]])
>>> import math
>>> vecFactorial=np.vectorize(math.factorial) # 函数向量化
>>> vecFactorial(mat)
matrix([[  1,   2,   6],[ 24, 120, 720]])
http://www.rdtb.cn/news/15312.html

相关文章:

  • 电商网站如何存储图片什么软件可以推广
  • 网页设计制作说明排名轻松seo 网站推广
  • 企业内网模板优化公司网站排名
  • 无代码开发原理西安seo网站关键词
  • 衢州 网站 制作宁波优化推广选哪家
  • 网站建设的安全性seo是哪里
  • 苏州有哪些做网站bt种子万能搜索神器
  • wordpress 改社交图标网络优化大师
  • web开发是网站开发吗seo费用价格
  • 那个网站做二手设备比较好如何制作网站最简单的方法
  • 北京小程序设计制作seo 培训教程
  • 四川建设网官网住房和城乡厅官网郑州纯手工seo
  • 桂林做百度seo推广优化
  • 网站做下载页面搜索引擎排名大全
  • 电站建设招聘网站114黄页
  • 涡阳在北京做网站的名人如何做营销策划方案
  • 公司内部网站维护seo网络推广排名
  • 更换网站后台管理系统优化网络推广外包
  • 深圳网页设计兴田德润赞扬seo站
  • wordpress 单页 主题山东网站seo推广优化价格
  • 模板网站怎么优化新东方教育培训机构官网
  • 淘宝上面的网站建设是靠谱独立站seo实操
  • 广州网站备案营销计划书7个步骤
  • html怎么做网站首页网站怎么优化自己免费
  • 十大网站有哪些百度云官网登录首页
  • 阳江市住房和城乡建设局网站网络推广和网站推广
  • 网站建设与制作优化最狠的手机优化软件
  • 软件制作权seo入门培训
  • 建站空间怎么选优化快速排名教程
  • 网站运营推广怎做软文推广例子