当前位置: 首页 > news >正文

赛罕区城乡建设局网站免费seo快速排名系统

赛罕区城乡建设局网站,免费seo快速排名系统,云南省建设厅网站二级建造师,医疗科技网站建设第1章 如何听起来像数据科学家 文章目录 第1章 如何听起来像数据科学家1.1.1 基本的专业术语1.1.3 案例:西格玛公司1.2.3 为什么是Python1.4.2 案例:市场营销费用1.4.3 案例:数据科学家的岗位描述 我们拥有如此多的数据,而且正在生…

第1章 如何听起来像数据科学家

文章目录

      • 第1章 如何听起来像数据科学家
        • 1.1.1 基本的专业术语
        • 1.1.3 案例:西格玛公司
        • 1.2.3 为什么是Python
        • 1.4.2 案例:市场营销费用
        • 1.4.3 案例:数据科学家的岗位描述

我们拥有如此多的数据,而且正在生产更多数据,我们甚至创造了很多疯狂的小机器24×7不间断的收集数据,在21世纪,我们面对的真正问题是如何搞懂这些数据。

数据就在那里,总有一些对我们有价值的!肯定有!

我们要从数据中探寻洞察和知识。

1.1.1 基本的专业术语

当使用**数据(data)这个词时,我们指的是以有组织(organized)无组织(unorganized)**格式聚集在一起的信息。

  • 有组织数据(organized data):指以行列结构分类存储的数据,每一行代表一个观测对象(observation),每一列代表一个观测特征(characteristic)
  • 无组织数据(unorganized data):指以自由格式存储的数据,通常指文本、原始音频/信号和图片等。这类数据必须进行解析才能成为有组织的数据。

数据科学是关于如何处理数据、获取知识,并用知识完成以下任务的过程:

  • 决策
  • 预测未来
  • 理解过去或现在
  • 创造新产业或新产品

1.1.3 案例:西格玛公司

今天,许多严重依靠直觉的CEO希望快速做出决定,并尝试所有的方案,直到找到答案。

数据科学家Hughan博士则具有分析能力,她的策略是从用户产生的数据中寻找答案,而不是依靠直觉。数据科学正是利用这样的分析能力,帮助“司机”做决定。

1.2.3 为什么是Python

案例:分析一条推文

在本例中,我们将分析一些含有股票价格信息的推文。

tweet="RT @robdv: $TWTR now top holding for Andor,unseating $AAPL"
words_in_tweet=tweet.split(' ')
for word in words_in_tweet:if '$' in word:print("THIS IS ABOUT",word)

下面解释一下上面的代码片段:

(1)用变量tweet存储推文信息(Python中的string类型):RT @robdv: $TWTR now top holding for Andor,unseating $AAPL

(2)word_in_tweet变量用于对原始推文进行切分(将文字隔开)该变量的内容如下:

['RT', '@robdv:', '$TWTR', 'now', 'top', 'holding', 'for', 'Andor,unseating', '$AAPL']

(3)用for循环对切分开的列表进行迭代,逐个查看列表中的内容

(4)用if语句判断推文中的每一个词是否包含$符号(人们在推文中使用$表示股票行情)

(5)如果推文中包含$符号,则输出该词

这段代码的运行结果如下:

THIS IS ABOUT $TWTR
THIS IS ABOUT $AAPL

它们是这段推文中仅有的两个含有$符号的单词

1.4.2 案例:市场营销费用

image-20230224160912745

image-20230224161142259

这种类型的问题在数据科学中非常常见。我们试图识别影响产品销量的关键特征,如果能够分离出关键特征,就能够利用这种关系,调整营销费用的分配方式,实现销量的提升。

实际上这是一个商业问题。

需求是:用最少(尽量少)的广告预算得到最大(尽量大)的销量

所以我们真正的目的是:找到电视、广播、报纸上花费的广告预算和销量之间的关系。

我们用t代表电视广告花费,r代表广播广告花费,n代表报纸广告花费,s代表产品销量

f ( t , r , n ) = s f(t,r,n)=s f(t,r,n)=s 找到这个函数关系;或者至少找到t、r、n对s影响的权重

1.4.3 案例:数据科学家的岗位描述

image-20230224162915742

请注意第二家公司要求掌握的核心的Python库,本书将会对这些库进行介绍。

import requests
#used to grab data from the web 从网站中抓取数据
from bs4 import BeautifulSoup
#used to parse HTML 解析HTML
from sklearn.feature_extraction.text import CountVectorizer
#used to count number of words and phrases (we will be using this module a lot)

前两行imports代码用于从招牌网站中抓取数据,第三行import用于对文本进行计数。

texts=[]
#hold our job descriptions in this list
for index in range(0,1000,10): #go through 100 pages of indeedpage='https://www.indeed.com/jobs?q=data+scientist&start='+str(index)#identify the url of the job listingsweb_result=requests.get(page).text#use requests to actually visit the urlsoup=BeautifulSoup(web_result)#parse the html of the resulting pagefor listing in soup.findAll('span',{'class':'summary'}):#for each listing on the pagetexts.append(listing.text)#append the text of the listing to our list

以上代码的功能是打开100个网页,抓取网页中的岗位描述信息。最重要的变量是texts,它存储了1000个岗位描述。

type(texts) #==list
vect=CountVectorizer(ngram_range(1,2),stop_words='english')
#get basic counts of one and two word phrases
matrix=vect.fit_transform(texts)
#fit and learn to the vocabulary in the corpus
print(len(vect.get_feature_names())) #how many features are there
#There are 11,293 total one and two words phrases in my case!!

image-20230225141424158

image-20230225141442061

本案例的代码由于网站反爬虫机制或者网页结构变化等其他一系列原因,并不能直接运行。
`

[外链图片转存中…(img-S5Zo0ehs-1681435562538)]

[外链图片转存中…(img-pTLTzwIz-1681435562538)]

本案例的代码由于网站反爬虫机制或者网页结构变化等其他一系列原因,并不能直接运行。

http://www.rdtb.cn/news/11869.html

相关文章:

  • 网站模板哪个好用关键词点击优化工具
  • c 网站开发如何进行百度推广
  • 石景山网站建设的大公司西安网络推广公司大全
  • 网站备案要多少钱湖南专业seo推广
  • wordpress 自定义简码系统优化的方法
  • 昆明网站建设咨询百度极速版推广员怎么申请
  • 做广告联盟怎么做网站一个产品的宣传和推广方案
  • 推荐成都网站建设武汉软件测试培训机构排名
  • 怎么做新浪网站能搜任何网站的浏览器
  • wordpress看流量seo网站推广批发
  • 推荐武汉网站建设网络营销五个特点
  • 做国外贸易哪个网站好百度指数功能有哪些
  • 安徽公路建设行业协会网站海外营销推广
  • 安徽网站建设哪家好武汉seo招聘网
  • 精品简历网官网汕头seo优化
  • 男女宾馆做爰视频网站网易搜索引擎入口
  • 网站建设毕业设计综述seo排名工具有哪些
  • 微信公众号 做不了微网站吗网络营销活动策划方案模板
  • 怎么建立淘宝客网站太原互联网推广公司
  • 太原seo网络推广平台seo站外推广
  • 室内设计公司网站设计金华百度seo
  • 北京网站改版费用天津seo排名收费
  • 专业网站建设办公网络营销模式下品牌推广途径
  • 找北京赛车网站开发武汉关键词排名提升
  • 广州做网站哪家公司最好手机上怎么制作网页
  • 医药网站建设atp最新排名
  • 成都响应式网站开发做营销策划的公司
  • 做网站都是花钱吗公司网站模版
  • 东莞专业网站设计制作公司关键词挖掘排名
  • 行业公司网站建设网络推广赚钱